Updating search results...

Search Resources

1173 Results

View
Selected filters:
  • engineering
Balloons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow the steps of the engineering design process as they design and construct balloons for aerial surveillance. After their first attempts to create balloons, they are given the associated Estimating Buoyancy lesson to learn about volume, buoyancy and density to help them iterate more successful balloon designs.Applying their newfound knowledge, the young engineers build and test balloons that fly carrying small flip cameras that capture aerial images of their school. Students use the aerial footage to draw maps and estimate areas.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marissa H. Forbes
Mike Soltys
Date Added:
09/18/2014
Base Isolation for Earthquake Resistance
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This document includes two activities related to earthquake base isolation. Learners explore earthquake hazards and damage to buildings by constructing model buildings and subjecting the buildings to ground vibration (shaking similar to earthquake vibrations) on a small shake table. Base isolation a powerful tool for earthquake engineering. It is meant to enable a building to survive a potentially devastating seismic impact through a proper initial design or subsequent modifications. The buildings are constructed by two- or three-person learner teams.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Biology
Engineering
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Larry Braile (Purdue University) and TOTLE (Teachers on the Leading Edge) Project
Date Added:
09/26/2022
Basic Engineering Data Collection and Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In Basic Engineering Data Collection and Analysis, Stephen B. Vardeman and J. Marcus Jobe stress the practical over the theoretical. Step by step, students get real engineering data and scenario examples along with chapter-long case studies that illustrate concepts in realistic, thoroughly detailed situations. This approach encourages students to work through the material by carrying out data collection and analysis projects from problem formulation through the preparation of professional technical reports—just as if they were on the job.

Subject:
Applied Science
Engineering
Mathematics
Statistics and Probability
Material Type:
Textbook
Provider:
Iowa State University
Author:
J. Marcus Jobe
Stephen B. Vardeman
Date Added:
01/23/2023
Basic Engineering Science - A Systems, Accounting, and Modeling Approach
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This textbook is based on a different paradigm for organizing an engineering science core --- a systems, accounting and modeling approach --- that emphasizes the common, underlying concepts of engineering science. Although this approach is not new, as most graduate students have been struck by this idea sometime during their graduate education, its use as the organizing principle for an undergraduate curriculum is new. By focusing on the underlying concepts and stressing the similarities between subjects that are often perceived by students (and taught by faculty) as unconnected topics, this approach provides engineering students a foundational framework for recognizing and building connections as they travel through their education.

Subject:
Applied Science
Engineering
Material Type:
Textbook
Provider:
Rose-Hulman Institute of Technology
Author:
Donald E. Richards
Date Added:
11/18/2021
Basically Acidic Ink
Read the Fine Print
Educational Use
Rating
0.0 stars

Students hypothesize whether vinegar and ammonia-based glass cleaner are acids or bases. They create designs on index cards using these substances as invisible inks. After the index cards have dried, they apply red cabbage juice as an indicator to reveal the designs.

Subject:
Applied Science
Chemistry
Engineering
Geoscience
History
History, Law, Politics
Physical Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Corey Burton
Nicole Stewart
Rachel Howser
Date Added:
09/18/2014
Basically Acids
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of acid/base chemistry in a fun, interactive way by studying instances of acid/base chemistry found in popular films such as Harry Potter and the Prisoner of Azkaban and National Treasure. Students learn what acids, bases and indicators are and how they can be used, including invisible ink. They also learn how engineers use acids and bases every day to better our quality of life. Students' interest is piqued by the use of popular culture in the classroom.

Subject:
Applied Science
Chemistry
Engineering
History
History, Law, Politics
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christine Hawthorne
Rachel Howser
Date Added:
09/18/2014
Battery-Resistor Circuit
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Date Added:
11/20/2008
Battery Voltage
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Date Added:
11/16/2007
Becoming the Next Bill Nye: Writing and Hosting the Educational Show
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Becoming the Next Bill Nye is about using video production techniques to develop your ability to engagingly convey your passions for science, technology, engineering, and / or math. You’ll have the opportunity to script and on-screen host 5-minute YouTube science, technology, engineering, and / or math-related shows to inspire youth to consider a future in science.

Subject:
Arts and Humanities
Business and Communication
Career and Technical Education
Communication
Education
Educational Technology
Film and Music Production
Graphic Arts
Graphic Design
Social Science
Visual Arts
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Boebel, Chris
Choe, Elizabeth
Goldstein, Jaime
Gunn, Joshua
Kuldell, Natalie
Riley, Ceri
Zaidan, George
Date Added:
01/01/2015
Bending Light
Unrestricted Use
CC BY
Rating
0.0 stars

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
University of Colorado at Boulder
Date Added:
05/09/2011
Bernoulli Levitator
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Demonstrate the Bernoulli Principle using simple materials on a small or large scale. This resource includes two activities that allow learners to experience the Bernoulli Principle, in which an object is suspended in air by blowing down on it. Use this activity to explain how atomizers work and why windows are sometimes sucked out of their frames as two trains rush past each other.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
07/07/2006
Beyond Data Collection: Analysis and Identification of Patterns
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article provides a brief discussion of the importance of teaching students to analyze data and representations of data as well as two resources that can help teachers implement these strategies into their instruction.

Subject:
Applied Science
Environmental Science
Material Type:
Lesson Plan
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Jessica Fries-Gaither
Date Added:
10/17/2014
Beyond Engineering: Building with Nature
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

If you’re a coastal engineer, ecologist or planner, then this is the course for you. You already know that engineering and ecological principles are not enough to realize nature-friendly solutions in practice. You need people on your side!

In this course you will learn how to build a relevant coalition of stakeholders to support the design and implementation of ecosystem-based hydraulic infrastructures. After learning basic stakeholder mapping and game theory techniques, you will apply Social Design Principles to a Building with Nature ecosystem-based design case. This will equip you to identify promising collaborative arrangements for your engineering or planning practice.

The course builds on the previous Building with Nature MOOC, which explored the use of natural materials and ecological processes in achieving effective and sustainable hydraulic infrastructure designs, distilling Engineering and Ecological Design Principles. In this course, the missing element of Social Design Principles are developed and taught.

You’ll learn from renowned Dutch engineers and international environmental scientists, who work at the technical- governance interface. Iconic examples such as the Maasvlakte II expansion to Rotterdam Harbor and the Delfland Sand Engine Mega-nourishment serve as study material. The challenges in designing and implementing these nature-friendly hydraulic infrastructures are explored by the eminent professors who were responsible for their genesis.

Join us in becoming one of the new generation of engineers, ecologists and planners who see the Building with Nature integrated design approach as critical to hydraulic engineering, nature and society.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
J. Slinger
Date Added:
06/17/2020
Biodomes Engineering Design Project: Lessons 2-6
Read the Fine Print
Educational Use
Rating
0.0 stars

In this multi-day activity, students explore environments, ecosystems, energy flow and organism interactions by creating a scale model biodome, following the steps of the engineering design process. The Procedure section provides activity instructions for Biodomes unit, lessons 2-6, as students work through Parts 1-6 to develop their model biodome. Subjects include energy flow and food chains, basic needs of plants and animals, and the importance of decomposers. Students consider why a solid understanding of one's environment and the interdependence of an ecosystem can inform the choices we make and the way we engineer our own communities. This activity can be conducted as either a very structured or open-ended design.

Subject:
Applied Science
Ecology
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise Carlson
Katherine Beggs
Malinda Schaefer Zarske
Date Added:
10/14/2015
Bioengineering Body Parts
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from NOVA scienceNOW, scientists discuss their attempts to grow human body parts in a jar.

Subject:
Applied Science
Engineering
Life Science
Technology
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
HHMI
WGBH Educational Foundation
Date Added:
02/01/2011
Biological Engineering II: Instrumentation and Measurement
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data. Enrollment preference is given to juniors and seniors.

Subject:
Applied Science
Biology
Career and Technical Education
Electronic Technology
Engineering
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Manalis, Scott
Shusteff, Maxim
So, Peter
Date Added:
09/01/2006
Biomimicry and Sustainable Design - Nature Is an Engineering Marvel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of biomimicry and sustainable design. Countless examples illustrate the wisdom of nature in how organisms are adapted for survival, such as in body style, physiological processes, water conservation, thermal radiation and mutualistic relationships, to assure species perpetuation. Students learn from articles and videos, building a framework of evidence substantiating the indisputable fact that organisms operate "smarter" and thus provide humans with inspiration in how to improve products, systems and cities. As students focus on applying the ecological principles of the previous lessons to the future design of our human-centered world, they also learn that often our practices are incapable of replicating the precision in which nature completes certain functions, as evidenced by our dependence on bees as pollinators of the human food supply. The message of biomimicry is one of respect: study to improve human practices and ultimately protect natural systems. This heightened appreciation helps students to grasp the value of industry and urban mimetic designs to assure protection of global resources, minimize human impact and conserve nonrenewable resources. All of these issues aid students in creating a viable guest resort in the Sonoran Desert.

Subject:
Applied Science
Ecology
Engineering
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy J. Holmgren
Date Added:
09/18/2014
Black Hole Explorer Game
Read the Fine Print
Rating
0.0 stars

This board game challenges players (ages 10+) to build a spaceship and fly to a black hole. The game provides opportunities for understanding phenomena based on current black hole research. During the game, players will experience the dangers and excitement of a real space mission, and learn about the nature of black holes by launching scientific probes. The game can be played competitively or as a team (instructions are also provided for playing in large groups. Black Hole Explorer consists of: Game Board, Game Rules, Spacecraft Data sheets, Science Briefing Room document, Event cards (28), Probe result cards (12), Energy tokens (140). Game components are available as PDF downloads; dice and game pieces must be provided by the user. NOTE: tokens and cards need to be cut to size from letter-size cardstock.

Subject:
Applied Science
Engineering
Physical Science
Physics
Space Science
Technology
Material Type:
Game
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Blacker Than Black
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video adapted from NASA, two members of a NASA research team working to produce carbon nanotubes share some background behind this new technology, show examples of how it will be useful, and explain the various tests being performed to ensure readiness for spaceflight.

Subject:
Applied Science
Chemistry
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Lesson
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media Common Core Collection
Author:
NASA
WGBH Educational Foundation
WNET
Date Added:
10/28/2011