Updating search results...

Search Resources

83 Results

View
Selected filters:
  • neuroscience
Philosophical Issues in Brain Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to important philosophical questions about the mind, specifically those that are intimately connected with contemporary psychology and neuroscience. Are our concepts innate or are they acquired by experience? And what does it even mean to call a concept ‘innate’? Are ‘mental images’ pictures in the head? Is color in the mind or in the world? Is the mind nothing more than the brain? Can there be a science of consciousness? The course includes guest lectures by philosophers and cognitive scientists.

Subject:
Arts and Humanities
Life Science
Philosophy
Physical Science
Psychology
Social Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Byrne, Alex
Sinha, Pawan
Date Added:
02/01/2009
Psychology
Unrestricted Use
CC BY
Rating
0.0 stars

Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan

Subject:
Psychology
Social Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
02/14/2014
Psychology as a Biological Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This textbook provides standard introduction to psychology course content with a specific emphasis on biological aspects of psychology. This includes more content related to neuroscience methods, the brain and the nervous system. This book can be modified: feel free to add or remove modules to better suit your specific needs.Please note that the publisher requires you to login to access and download the textbooks.

Subject:
Psychology
Social Science
Material Type:
Textbook
Provider:
Diener Education Fund
Provider Set:
Noba
Author:
Ed Diener
Robert Biswas-Diener
Date Added:
12/02/2019
Psychophysiological Methods in Neuroscience
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

As a generally noninvasive subset of neuroscience methods, psychophysiological methods are used across a variety of disciplines in order to answer diverse questions about psychology, both mental events and behavior. Many different techniques are classified as psychophysiological. Each technique has its strengths and weaknesses, and knowing them allows researchers to decide what each offers for a particular question. Additionally, this knowledge allows research consumers to evaluate the meaning of the results in a particular experiment.

Subject:
Psychology
Social Science
Material Type:
Module
Provider:
Diener Education Fund
Provider Set:
Noba
Author:
Gregory A. Miller
Zachary Infantolino
Date Added:
10/28/2022
Pupillary Response & Test Your Reaction Time
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe and test their reflexes, including the (involuntary) pupillary response and (voluntary) reaction times using their dominant and non-dominant hands, as a way to further explore how reflexes occur in humans. They gain insights into how our bodies react to stimuli, and how some reactions and body movements are controlled automatically, without conscious thought. Using information from the associated lesson about how robots react to situations, including the stimulus-to-response framework, students see how engineers use human reflexes as examples for controls for robots.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanho
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Quantum materials pave the path for synthetic neuroscience
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Quantum materials are opening up a realm of possibilities in materials research. Among the best known examples are superconductivity and quantum computing. But that’s only the beginning. The same properties that make these materials unique are also enabling researchers to demystify the inner workings of the human brain. So what makes quantum materials well suited for this purpose? Unlike the free-flowing electrons in ordinary conductors or semiconductors, electrons in quantum materials show correlated behavior. That in itself has been the focus of intense physics research. But the upshot for brain research is tunable electronic behavior that can mimic the electronic signaling of neurons and the synapses between them. Most importantly, quantum materials can simulate synaptic plasticity. Plasticity is the biological ability that makes learning and memory formation possible. It’s all about timing. Connections between neurons that fire within a short, milliseconds-long time window grow stronger..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Engineering
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/23/2019
Recommendations for Increasing Replicability in Psychology: Recommendations for increasing replicability
Unrestricted Use
CC BY
Rating
0.0 stars

Replicability of findings is at the heart of any empirical science. The aim of this article is to move the current replicability debate in psychology towards concrete recommendations for improvement. We focus on research practices but also offer guidelines for reviewers, editors, journal management, teachers, granting institutions, and university promotion committees, highlighting some of the emerging and existing practical solutions that can facilitate implementation of these recommendations. The challenges for improving replicability in psychological science are systemic. Improvement can occur only if changes are made at many levels of practice, evaluation, and reward.

Subject:
Psychology
Social Science
Material Type:
Reading
Provider:
European Journal of Personality
Author:
Brent W. Roberts
Brian A. Nosek
David C. Funder
Filip De Fruyt
Hannelore Weber
Jaap J. A. Denissen
Jan De Houwer
Jelte M. Wicherts
Jens B. Asendorpf
Klaus Fiedler
Manfred Schmitt
Marcel A. G. van Aken
Marco Perugini
Mark Conner
Reinhold Kliegl
Susann Fiedler
Date Added:
08/07/2020
Reconstructors: A Plaguing Problem
Read the Fine Print
Rating
0.0 stars

In A Plaguing Problem, students need to reconstruct lost knowledge about pain relieving drugs. They learn about concepts such as neurotransmission, the neurobiology and history underlying drug addiction, pain management, and analgesia. This game consists of three consecutive episodes with a continuous storyline and we recommend playing the episodes in order.

Material Type:
Activity/Lab
Game
Lesson Plan
Provider:
Rice University
Provider Set:
Rice Center for Technology in Teaching and Learning
Date Added:
04/18/2012
Reconstructors: Nothing to Rave About
Read the Fine Print
Rating
0.0 stars

In Nothing To Rave About, students are asked to uncover why there has been a dramatic increase in the number of teens admitted to the emergency room after partying at a local dance club. During their investigation, they learn how ecstasy and other club drugs act on the nervous system. This game consists of three consecutive episodes with a continuous storyline and we recommend playing the episodes in order.

Material Type:
Activity/Lab
Game
Lesson Plan
Provider:
Rice University
Provider Set:
Rice Center for Technology in Teaching and Learning
Date Added:
04/18/2012
Reflecting on Human Reflexes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about human reflexes, how our bodies react to stimuli and how some body reactions and movements are controlled automatically, without thinking consciously about the movement or responses. In the associated activity, students explore how reflexes work in the human body by observing an involuntary human reflex and testing their own reaction times using dominant and non-dominant hands. Once students understand the stimulus-to-response framework components as a way to describe human reflexes and reactions in certain situations, they connect this knowledge to how robots can be programmed to conduct similar reactions.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanho
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Robot Sensors and Sound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students continue to build a rigorous background in human sensors and their engineering equivalents by learning about electronic touch, light, sound and ultrasonic sensors that measure physical quantities somewhat like eyes, ears and skin. Specifically, they learn about microphones as one example of sound sensors, how sounds differ (intensity, pitch) and the components of sound waves (wavelength, period, frequency, amplitude). Using microphones connected to computers running (free) Audacity® software, student teams experiment with machine-generated sounds and their own voices and observe the resulting sound waves on the screen, helping them to understand that sounds are waves. Students take pre/post quizzes, complete a worksheet and watch two short online videos about "seeing" sound.

Subject:
Education
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Srijith Nair
Date Added:
10/14/2015
Social Neuroscience
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module provides an overview of the new field of social neuroscience, which combines the use of neuroscience methods and theories to understand how other people influence our thoughts, feelings, and behavior. The module reviews research measuring neural and hormonal responses to understand how we make judgments about other people and react to stress. Through these examples, it illustrates how social neuroscience addresses three different questions: (1) how our understanding of social behavior can be expanded when we consider neural and physiological responses, (2) what the actual biological systems are that implement social behavior (e.g., what specific brain areas are associated with specific social tasks), and (3) how biological systems are impacted by social processes.

Subject:
Psychology
Social Science
Material Type:
Module
Provider:
Diener Education Fund
Provider Set:
Noba
Author:
Jennifer T. Kubota
Tiffany A. Ito
Date Added:
11/14/2022
Sound from Left or Right?
Read the Fine Print
Educational Use
Rating
0.0 stars

Why do humans have two ears? How do the properties of sound help with directional hearing? Students learn about directional hearing and how our brains determine the direction of sounds by the difference in time between arrival of sound waves at our right and left ears. Student pairs use experimental set-ups that include the headset portions of stethoscopes to investigate directional hearing by testing each other's ability to identify the direction from which sounds originate.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Marianne Catanh
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Statistics for Brain and Cognitive Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Provides students with the basic tools for analyzing experimental data, properly interpreting statistical reports in the literature, and reasoning under uncertain situations. Topics organized around three key theories: Probability, statistical, and the linear model. Probability theory covers axioms of probability, discrete and continuous probability models, law of large numbers, and the Central Limit Theorem. Statistical theory covers estimation, likelihood theory, Bayesian methods, bootstrap and other Monte Carlo methods, as well as hypothesis testing, confidence intervals, elementary design of experiments principles and goodness-of-fit. The linear model theory covers the simple regression model and the analysis of variance. Places equal emphasis on theory, data analyses, and simulation studies.

Subject:
Life Science
Mathematics
Physical Science
Statistics and Probability
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Brown, Emery
Date Added:
09/01/2016
Synapse Remodeling in Health and Disease
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Our brains are remarkably adaptable throughout our lives. Individual brain cells called neurons form synapses, sites of physical connection and communication between neurons, and then repeatedly rewire those connections in response to new experiences or to neuronal cell death caused by injury, disease, or aging. In this course, we will explore how neurons establish their synapses in the healthy brain during childhood and later in life, and how this process goes awry in disease states. More specifically, we will discuss how the brain forms its synapses early in life, stabilizes a subset of those synapses for long-term maintenance, and continues to add and remove synapses throughout life. We will then explore synapse dysfunction in diseases such as autism and Alzheimer’s disease, which involve abnormal increases or losses of synaptic connections, respectively. We will also consider synapse remodeling, a process of adding and removing synaptic connections to optimize our brain network, in the context of neuroinflammation, recovery from traumatic brain injury, and psychological trauma following prolonged stress.
This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Boivin, Josiah
Ordonez, Dalila
Date Added:
09/01/2022
Systems Neuroscience Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Systems Neuroscience Laboratory consists of a series of laboratories designed to give students experience with basic techniques for conducting systems neuroscience research. It includes sessions on anatomical, neurophysiological, and data acquisition and analysis techniques, and the ways these techniques are used to study nervous system function. Training is provided in the art of scientific writing with feedback designed to improve writing skills. Assignments include weekly preparation for lab sessions, two major research reports and a series of basic computer programming tutorials (MATLAB®). The class involves the use of experimental animals. Enrollment is limited.

Subject:
Biology
Life Science
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
DiCarlo, James
Tye, Kay
Date Added:
02/01/2013
That's Hot! Robot Brain Programming
Read the Fine Print
Educational Use
Rating
0.0 stars

With the challenge to program computers to mimic the human reaction after touching a hot object, students program LEGO® robots to "react" and move back quickly once their touch sensors bump into something. By relating human senses to electronic sensors used in robots, students see the similarities between the human brain and its engineering counterpart, the computer, and come to better understand the functioning of sensors in both applications. They apply an understanding of the human "stimulus-sensor-coordinator-effector-response" framework to logically understand human and robot actions.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charlie Franklin
Sachin Nair
Satish Nair
Date Added:
09/18/2014
Understanding the neurobiology of the ageing brain
Unrestricted Use
CC BY
Rating
0.0 stars

In this CC BY licensed PowerPoint presentation, Dr. Declan King, who is a post-doc in the Centre for Discovery Brain Sciences at the Edinburgh Medical School: Biomedical Sciences’ at the University of Edinburgh gives a brief explanation of the ageing brain and briefly describes a useful method for isolating both protein and RNA preparations from enriched synaptic fractions from post-mortem brain tissue.

The PowerPoint style lecture was made into an OER by Dr. King on April 2020 as part of the Digital Education module for the Postgraduate Certificate (PgCert) in Academic Practice at The University of Edinburgh.

Subject:
Applied Science
Material Type:
Case Study
Lesson
Author:
Adam Nash
By Apidays
By Cb Insights
By Mark Suster
By Wim Vanderbauwhede
Cb Insights
Declan King
Gary Vaynerchuk
Mark Suster
Wim Vanderbauwhede
Https Www Slideshare Net
Date Added:
04/06/2020