Material covered in this course includes the following topics: Laws of thermodynamics: …
Material covered in this course includes the following topics:
Laws of thermodynamics: general formulation and applications to mechanical, electromagnetic and electrochemical systems, solutions, and phase diagrams Computation of phase diagrams Statistical thermodynamics and relation between microscopic and macroscopic properties, including ensembles, gases, crystal lattices, phase transitions Applications to phase stability and properties of mixtures Computational modeling Interfaces
This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5111 (Materials at Equilibrium).
The Maxwell-Boltzmann distribution describes the distribution of speeds among the particles in …
The Maxwell-Boltzmann distribution describes the distribution of speeds among the particles in a sample of gas at a given temperature. The distribution is often represented graphically, with particle speed on the x-axis and relative number of particles on the y-axis. Created by Sal Khan.
This activity is an inquiry lesson where students learn how to accurately …
This activity is an inquiry lesson where students learn how to accurately read a thermometer and then set up an investigation to compare the temperatures of different materials or locations.
How do microwaves heat up your coffee? Adjust the frequency and amplitude …
How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.
How do microwaves heat up your coffee? Adjust the frequency and amplitude …
How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.
Modelling is about understanding the nature: our world, ourselves and our work. …
Modelling is about understanding the nature: our world, ourselves and our work. Everything that we observe has a cause (typically several) and has the effect thereof. The heart of modelling lies in identifying, understanding and quantifying these cause-and-effect relationships.
A model can be treated as a (selective) representation of a system. We create the model by defining a mapping from the system space to the model space, thus we can map system state and behaviour to model state and behaviour. By defining the inverse mapping, we may map results from the study of the model back to the system. In this course, using an overarching modelling paradigm, students will become familiar with several instances of modelling, e.g., mechanics, thermal dynamics, fluid mechanics, etc.
This type of physics course can easily seem to the student like …
This type of physics course can easily seem to the student like a random grab-bag of topics, consisting of everything that didn’t fit in the earlier semesters on mechanics and electromagnetism. But there is a clear organizing principle for most of what we’ll be studying. It has to do with two surprising facts about time. In particular, one of these facts leads us to the conclusion that light and matter can’t really be made of particles, as envisioned by Isaac Newton’s grand vision of the universe — they must be made of waves.
This site provides a free physics textbook that tells the story of …
This site provides a free physics textbook that tells the story of how it became possible, after 2500 years of exploration, to answer such questions. The book is written for the curious: it is entertaining, surprising and challenging on every page. With little mathematics, starting from observations of everyday life, the text explores the most fascinating parts of mechanics, thermodynamics, special and general relativity, electrodynamics, quantum theory and modern attempts at unification. The essence of these fields is summarized in the most simple terms. For example, the text presents modern physics as consequence of the notions of minimum entropy, maximum speed, maximum force, minimum change of charge and minimum action.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Notch signaling is the key to many binary decisions metazoan cells make during development. Downstream signals from Notch trigger transcriptional remodeling that resolves dichotomies like differentiation between developmental cell fates. In the "Notch on" state, the Notch intracellular domain (NICD) relocates to the nucleus and binds to the protein RBPJ. While Notch activation is well studied, the transition to the "Notch off" state, where NICD and RBPJ dissociate, is not well understood. Recent research using phylogenetic analysis, computational biochemistry, and in vitro experiments suggests that heat flux is an important regulator of Notch signaling. The researchers determined that NICD senses temperature changes through its ankyrin domain. The ankyrin domain is highly conserved across species and contains β-hairpins enriched for charged amino acids. These charged amino acids amplify destabilizing electrostatic interactions, making the domain vulnerable to heat destruction..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Students will use science skills of observing, describing and measuring in the …
Students will use science skills of observing, describing and measuring in the context of Making Ice Cream. Students will understand the concept that physical properties can change.
This course covers the basics of general relativity, standard big bang cosmology, …
This course covers the basics of general relativity, standard big bang cosmology, thermodynamics of the early universe, cosmic background radiation, primordial nucleosynthesis, basics of the standard model of particle physics, electroweak and QCD phase transition, basics of group theory, grand unified theories, baryon asymmetry, monopoles, cosmic strings, domain walls, axions, inflationary universe, and structure formation.
In this course, you will learn about phase relations as applied to …
In this course, you will learn about phase relations as applied to oil and/or gas reservoir processes, enhanced oil recovery, gas pipeline transportation, natural gas processing and liquefaction, and other problems in petroleum production. The primary objective of the course is to apply the thermodynamics of phase equilibrium to the framework for phase behavior modeling of petroleum fluids. The focus of the course will be on equilibrium thermodynamics and its relevance to phase behavior predictions and phase equilibrium data description. We will attempt to apply phase behavior principles to petroleum production processes of practical interest, especially natural gas condensate systems.
This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, …
This course covers elementary statistical mechanics, transport properties, kinetic theory, solid state, reaction rate theory, and chemical reaction dynamics. Acknowledgements The staff for this course would like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Chemistry Department affiliated with course #5.62. Since the following works have evolved over a period of many years, no single source can be attributed.
Continuation of Physics 1. Topics include: simple harmonic motion, gravitation, fluid mechanics, waves, the kinetic theory of gases, and the first and second laws of thermodynamics. This course is a calculus-based physics course that is required by four-year colleges in science and engineering studies.
This is a course for non-science majors that is a survey of …
This is a course for non-science majors that is a survey of the central concepts in physics relating everyday experiences with the principles and laws in physics on a conceptual level. Upon successful completion of this course, students will be able to: Describe basic principles of motion and state the law of inertia; Predict the motion of an object by applying Newtonęs laws when given the mass, a force, the characteristics of motion and a duration of time; Summarize the law of conservation of energy and explain its importance as the fundamental principle of energy as a law of nature; Explain the use of the principle of Energy conservation when applied to simple energy transformation systems; Define the Conservation of Energy Law as the 1st Law of Thermodynamics and State 2nd Law of Thermodynamics in 3 ways; Outline the limitations and risks associated with current societal energy practices,and explore options for changes in energy policy for the next century and beyond; Describe physical aspects of waves and wave motion; and explain the production of electromagnetic waves, and distinguish between the different parts of the electromagnetic spectrum.
This course presents the mechanical, optical, and transport properties of polymers with …
This course presents the mechanical, optical, and transport properties of polymers with respect to the underlying physics and physical chemistry of polymers in melt, solution, and solid state. Topics include conformation and molecular dimensions of polymer chains in solutions, melts, blends, and block copolymers; an examination of the structure of glassy, crystalline, and rubbery elastic states of polymers; thermodynamics of polymer solutions, blends, crystallization; liquid crystallinity, microphase separation, and self-assembled organic-inorganic nanocomposites. Case studies include relationships between structure and function in technologically important polymeric systems.
In this hands-on science lesson, the students will observe (and eat!) cooked …
In this hands-on science lesson, the students will observe (and eat!) cooked popcorn and uncooked popcorn. The students will understand why popcorn pops. The students will weigh cooked and uncooked popcorn to understand why cooked popcorn weighs more.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.