Antibiotics save people’s lives...and make bacteria stronger and more likely to kill …
Antibiotics save people’s lives...and make bacteria stronger and more likely to kill us. What is the best practice to balance these conflicting issues? In this problem-based learning module, the students will be evaluating real-life medical situations in conjunction with actual staff at those institutions and offering action plans to be ‘implemented’ there. In order to accomplish this, the science unit will be interlocking with social studies and a language arts unit that will have them identifying target audiences and sculpting a way to present their findings. This unit has the potential to be a full problem-based unit as well as highly interdisciplinary--it’s connected to full units in social studies and language arts which stand alone but can be fully integrated if desired.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the behavior of chromosomes during meiosisDescribe cellular events during meiosisExplain the differences between meiosis and mitosisExplain the mechanisms within meiosis that generate genetic variation among the products of meiosis
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the behavior of chromosomes during meiosisDescribe cellular events during meiosisExplain the differences between meiosis and mitosisExplain the mechanisms within meiosis that generate genetic variation among the products of meiosis
Explore how populations change over time in a NetLogo model of sheep …
Explore how populations change over time in a NetLogo model of sheep and grass. Experiment with the initial number of sheep, the sheep birthrate, the amount of energy sheep gain from the grass, and the rate at which the grass re-grows. Remove sheep that have a particular trait (better teeth) from the population, then watch what happens to the sheep teeth trait in the population as a whole. Consider conflicting selection pressures to make predictions about other instances of natural selection.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Genetics can affect many aspects of human health, in part by influencing the composition of the gut microbiome. The associations between genetic variants and individual microbial taxa are often investigated with genome-wide association studies (GWASs). However, typical GWASs have low statistical power, because they require extensive multiple testing and can’t account for inherent data structure. To help solve this problem, researchers recently developed a new approach: a covariate-adjusted kernel RV (KRV) framework. This framework compares pairwise similarity in genetic profiles to pairwise similarity in microbial profiles therefore reducing the multiple testing burden without obscuring the data structure. In simulation studies, the KRV framework had greater statistical power than other microbiome GWAS approaches in a range of scenarios..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
The Geniverse software is being developed as part of a five-year research …
The Geniverse software is being developed as part of a five-year research project funded by the National Science Foundation. Still in its early stages, a Beta version of the software is currently being piloted in six schools throughout New England. We invite you to try the current Beta version, keeping in mind that you may encounter errors or pages that are not fully functional. If you encounter any problem, it may help to refresh or reload the web page.
This initial module from the GENIQUEST project introduces the dragons and the …
This initial module from the GENIQUEST project introduces the dragons and the inheritance of their traits, then delves into meiosis and its relationship to inherited traits. Students examine the effects of choosing different gametes on dragon offspring, and learn about genetic recombination by creating recombination events to generate specific offspring from two given parent dragons. Students learn about inbred strains and breed an inbred strain of dragons themselves.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Plants form a close bond with a vast range of microorganisms. In fact, this microbiome could be viewed as an extended phenotype of the plant genome enhancing plants’ ability to cope with environmental stress. To understand this connection, researchers recently examined the microbiome of the model legume Medicago truncatula. They found that bacterial diversity decreased between external and internal plant compartments and that microbiome composition was shaped by strong interactions between compartment type, soil, and plant genotype with the microbial composition of external compartments driven by soil origin and the microbial composition of internal compartments driven by host genetics. All compartments were dominated by Ensifer, the nitrogen-fixing bacteria that form root nodule symbiosis with M. truncatula..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"There is a reciprocal relationship between the gut microbiome and its host. The microbiome influences host health and survival, while host traits shape the microbial community structure. One of the ways the host is thought to influence the microbiome is through the major histocompatibility complex (MHC). The MHC is a collection of variable genes that play key roles in host immunity. However, few studies have examined wild animal populations for links between the MHC and microbiome. To close this gap, researchers examined the MHC genotypes and gut microbial communities of wild Seychelles warblers (_Acrocephalus sechellensis_). Specific MHC alleles, rather than overall MHC diversity, corresponded to differences in the diversity and composition of the microbiota and MHC class I alleles had a greater impact on the microbiota than MHC class II alleles. Gut microbiome diversity also increased with whole-genome heterozygosity, which is the proportion of sites in the genome with two different alleles..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.