Updating search results...

Search Resources

55 Results

View
Selected filters:
  • heat energy
Ablative Shield Egg Data Sheet
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

You will present students with a challenge: build a structure from different materials that will protect a model of the Ares launch vehicles (a raw egg) from the heat of a propane torch for as long as possible. Then they design, build, test, and revise their own thermal protection systems. They document their designs with sketches and written descriptions. As a culmination, students compile their results into a poster and present them to the class.

This activity explores the concepts of energy transfer with the following standards:
• Energy is a property of many substances and is associated with heat and light.
• Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature.

Subject:
Applied Science
Engineering
Physical Science
Material Type:
Activity/Lab
Date Added:
09/26/2018
The Adventure of Physics - Vol. I: Fall, Flow, and Heat
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book is written for anybody who is curious about nature and motion. Curiosity about how people, animals, things, images and space move leads to many adventures. This volume presents the best of them in the domain of everyday life.

Carefully observing everyday motion allows us to deduce six essential statements: everyday motion is continuous, conserved, relative, reversible, mirror-invariant – and lazy. Yes, nature is indeed lazy: in every motion, it minimizes change. This text explores how these six results are deduced and how they fit with all those observations that seem to contradict them. In the structure of modern physics, shown in Figure 1, the results on everyday motion form the major part of the starting point at the bottom. The present volume is the first of a six-volume overview of physics. It resulted from a threefold aim I have pursued since 1990: to present motion in a way that is simple, up to date and captivating.

In order to be simple, the text focuses on concepts, while keeping mathematics to the necessary minimum. Understanding the concepts of physics is given precedence over using formulae in calculations. The whole text is within the reach of an undergraduate.

In order to be up to date, the text is enriched by the many gems – both theoretical and empirical – that are scattered throughout the scientific literature.

In order to be captivating, the text tries to startle the reader as much as possible. Reading a book on general physics should be like going to a magic show. We watch, we are astonished, we do not believe our eyes, we think, and finally we understand the trick. When we look at nature, we often have the same experience. Indeed, every page presents at least one surprise or provocation for the reader to think about. Numerous interesting challenges are proposed.

The motto of the text, die Menschen stärken, die Sachen klären, a famous statement by Hartmut von Hentig on pedagogy, translates as: ‘To fortify people, to clarify things.’ Clarifying things – and adhering only to the truth – requires courage, as changing the habits of thought produces fear, often hidden by anger. But by overcoming our fears we grow in strength. And we experience intense and beautiful emotions. All great adventures in life allow this, and exploring motion is one of them. Enjoy it!

Subject:
Physical Science
Physics
Material Type:
Textbook
Provider:
Motion Mountain
Author:
Christoph Schiller
Date Added:
02/20/2015
All About Earth's Climate
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In this informational text, elementary school readers learn about the difference between weather and climate and about components of the climate system. The text can be used to practice visualizing and other comprehension strategies. Available in K-2 and 3-5 grade bands and as an illustrated book as well as a text document, the story appears in the online magazine Beyond Weather and the Water Cycle.

Subject:
Arts and Humanities
Chemistry
Education
English Language Arts
Geoscience
Physical Science
Physics
Reading Informational Text
Space Science
Material Type:
Activity/Lab
Lesson Plan
Reading
Teaching/Learning Strategy
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Weather and the Water Cycle
Author:
Jessica Fries-Gaither
National Science Foundation
Date Added:
05/30/2012
Baggie Chemistry
Read the Fine Print
Rating
0.0 stars

In this experiment, two chemicals that can be found around the house will be mixed within a plastic baggie, and several chemical changes will be observed.

Subject:
Chemistry
Geoscience
Physical Science
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/12/2011
Basic Physics Second Edition (Student Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

CK-12 Basic Physics - Second Edition updates CK-12 Basic Physics and is intended to be used as one small part of a multifaceted strategy to teach physics conceptually and mathematically.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Dann, James
Date Added:
03/20/2010
Biology
Unrestricted Use
CC BY
Rating
0.0 stars

Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
08/22/2012
Build and Test a Model Solar House
Read the Fine Print
Rating
0.0 stars

Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Assessment
Diagram/Illustration
Lecture Notes
Student Guide
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
05/16/2012
Concord Consortium: Solar Oven
Read the Fine Print
Rating
0.0 stars

Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
04/02/2013
Conduction, Convection and Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

With the help of simple, teacher-led demonstration activities, students learn the basic concepts of heat transfer by means of conduction, convection, and radiation. Students then apply these concepts as they work in teams to solve two problems. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same thirty-minute time interval. Students design their solutions using only common, everyday materials. They record the water temperatures in their two soda cans every five minutes, and prepare line graphs in order to visually compare their results to the temperature of an unaltered control can of water.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
10/14/2015
Cooking Cookies with Solar Power
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, two solar cookers are tested against a control to see which can cook a "s'more" faster.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
02/20/2004
Density and Buoyancy: Mixing Hot and Cold Water
Read the Fine Print
Educational Use
Rating
0.0 stars

Watch warm water float on top of cold water in this video segment adapted from ZOOM.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/22/2004
Energy Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

Students evaluate various everyday energy conversion devices and draw block flow diagrams to show the forms and states of energy into and out of the device. They also identify the forms of energy that are useful and the desired output of the device as well as the forms that are not useful for the intended use of the item. This can be used to lead into the law of conservation of energy and efficiency. The student activity is preceded by a demonstration of a more complicated system to convert chemical energy to heat energy to mechanical energy. Drawing the block energy conversion diagram for this system models the activity that the students then do themselves for other simpler systems.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
Clarkson University
Author:
Jan DeWaters
Susan Powers
Date Added:
08/11/2009
Energy Forms, States and Conversions
Read the Fine Print
Educational Use
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Forms and States Demonstrations
Read the Fine Print
Educational Use
Rating
0.0 stars

Demonstrations explain the concepts of energy forms (sound, chemical, radiant [light], electrical, atomic [nuclear], mechanical, thermal [heat]) and states (potential, kinetic).

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jan DeWaters
Susan Powers
Date Added:
09/18/2014
Energy Transfer in Musical Instruments
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson covers concepts of energy and energy transfer utilizing energy transfer in musical instruments as an example. More specifically, the lesson explains the two different ways in which energy can be transferred between a system and its environment. The law of conservation of energy will also be taught. Example systems will be presented to students (two cars on a track and a tennis ball falling to the ground) and students will be asked to make predictions and explain the energy transfer mechanisms. The engineering focus comes in clearly in the associated activity when students are asked to apply the fundamental concepts of the lesson to design a musical instrument. The systems analyzed in the lesson should help a great deal in terms of discussing how to apply conservation of energy and energy transfer to make things.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Adam Kempton
Date Added:
09/18/2014
Energy and the Polar Environment: Virtual Bookshelf
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article highlights children's literature about light, heat, and energy sources for use in the elementary classroom.

Subject:
Applied Science
Environmental Science
Geoscience
Physical Science
Material Type:
Lesson Plan
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Penguins and Polar Bears: An Online Magazine for K-5 Teachers
Author:
Kate Hastings
Date Added:
10/17/2014
Essential Principle 2: Correlation to Standards and Curriculum Connections
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This article aligns the concepts of Essential Principle 2 of the Climate Sciences to the K-5 content standards of the National Science Education Standards. The author also identifies common misconceptions about heat and the greenhouse gases effect and offers resources for assessing students' understanding of interactions among components of the Earth system. This article continues the examination of the climate sciences and climate literacy on which the online magazine Beyond Weather and the Water Cycle is structured.

Subject:
Atmospheric Science
Physical Science
Material Type:
Assessment
Teaching/Learning Strategy
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Weather and the Water Cycle
Author:
Kimberly Lightle
National Science Foundation
Date Added:
05/30/2012