Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Identify the …
By the end of this section, you will be able to:Identify the spinal cord, cerebral lobes, and other brain areas on a diagram of the brainDescribe the basic functions of the spinal cord, cerebral lobes, and other brain areas
Cocaine afflicts many individuals and is potently addictive. Originally hailed as a …
Cocaine afflicts many individuals and is potently addictive. Originally hailed as a wonder-drug in the late 19th century, cocaine is now considered an illegal substance. Cocaine’s addictive properties can be attributed to changes in the dopamine reward pathway of the Ventral Tegmental Area and Substantia Nigra, Prefrontal Cortex, Dorsal Striatum, Nucleus Accumbens, Amygdala, Globus Pallidus, and Hippocampus. This drug affects the brain in two processes: binge and crave. The binge process highlights cocaine’s ability to block dopamine reuptake from the synapse resulting in hyperstimulation of the postsynaptic neuron in the dopamine reward pathway. The crave process promotes drug-seeking behavior through conditional and contextual cues. Understanding the effects of cocaine in the brain may grant insight in creating future medication and therapies to treat individuals addicted to this drug.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Nutrient-poor diets can increase the risk of neurodegenerative diseases such as Alzheimer’s, and diets poor in fiber are widespread, especially in industrialized nations. However, whether fiber deficiency—which alters the gut microbiota—impairs cognition through the gut–brain axis remains unclear. To find out, researchers recently analyzed mice fed a fiber-deficient diet for 15 weeks. Compared to normal mice, the fiber-deficient mice exhibited cognitive impairment and were unable to complete typical activities like nest organization. In addition, the synapses in the brain area regulating cognitive function were damaged, and neuroinflammation occurred. Immune cells called microglia (indicated by Iba1) engulfed synapses (indicated by PSD-95) in the fiber-deficient mice. Furthermore, the fiber-deficient mice exhibited gut microbiota disruption that was associated with, and possibly responsible for, the cognitive deficits..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"A new study suggests that transferring gut microbes from aged to young adult mice has measurable effects on parts of the central nervous system, highlighting the importance of the gut–brain axis in aging. Researchers performed fecal transplants from aged or age-matched donors to younger adult mice. The two groups showed significant differences in their microbial profiles. After transplantation, young adult recipients showed no significant changes in markers of anxiety, explorative behavior, or locomotor activity. But recipients did show impaired spatial learning and memory, as measured by a maze test. These changes were paralleled by alterations in the expression of proteins associated with synaptic plasticity and neurotransmission and changes in microglial cells in the hippocampus — the learning and memory center of the brain..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Memories seem to be created in the blink of an eye -- we can recall an event as soon as it is over. But is this actually the case? Scientists know the key signals for memory formation but have lacked the tools to figure out the details, such as when and for how long particular molecules need to be active. By developing a more precise way of disrupting signaling, researchers have now defined this window for one of the most important molecules responsible for memory. Memories are recorded through changes in synapses, or the connections, between neurons. Many synapses are located on tiny bumps called spines that are found along the branching dendrites of neurons. When synapses are very active, like they are during learning or a memorable event, molecular signaling cascades turn on. These cascades strengthen synapses and make spines grow. The protein calcium/calmodulin kinase II, or CaMKII, is required for both of these events. But precisely when and how long CaMKII needs to act was unclear..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
In this episode of Crash Course Psychology, we get to meet the …
In this episode of Crash Course Psychology, we get to meet the brain. Hank talks us through the Central Nervous System, the ancestral structures of the brain, the limbic system, and new structures of the brain. Plus, what does Phineas Gage have to do with all of this?
Chapters: Introduction: Phrenology Localized Parts of the Brain Control Different Functions Basics of the Central Nervous System The Curious Case of Phineas Gage Brain Structures Ancestral Structures of the Brain "Old Brain" - Brain Stem, Medulla, Pons, Thalamus, Reticular Formation, Cerebellum Limbic System - Amygdala, Hypothalamus, Hippocampus, Pituitary Gland Gray Matter & Brain Hemispheres Cerebral Cortex Frontal, Parietal, Occipital, and Temporal Lobes Specialized Regions: Motor Cortex, Somatosensory Cortex, & Association Areas Review & Credits Credits
This course highlights the interplay between cellular and molecular storage mechanisms and …
This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function. Class sessions include lectures and discussion of papers.
Psychology is designed to meet scope and sequence requirements for the single-semester …
Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan
By the end of this section, you will be able to:Explain the …
By the end of this section, you will be able to:Explain the functions of the spinal cordIdentify the hemispheres and lobes of the brainDescribe the types of techniques available to clinicians and researchers to image or scan the brain
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Wnt signaling plays key roles in many processes, including cell polarity, proliferation, differentiation, and migration. The pathway is centrally involved in neurite and synapse development and maintenance. Wnt activity can be inhibited by Porcupine, an acylase that modifies Wnt ligands. A new study sought to understand how Wnt ligands affect neurite development. Using Wnt-C59, a Porcupine inhibitor, researchers blocked the secretion of endogenous Wnts in rat embryonic hippocampal neurons. They found that inhibiting Porcupine changed the morphology of the dendritic arbors and neurites of hippocampal neurons, while axonal polarity was not affected. β-catenin and Wnt3 levels decreased with Porcupine inhibition, while GSK-3β increased. Adding exogenous Wnt3a, 5a, and 7a ligands rescued the changes in neuronal morphology. Wnt3a restored neurite length to near the control, while Wnt7a increased the neurite length beyond that of the control..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.