Updating search results...

29 Results

View
Selected filters:
• interference
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this video David quickly explains each concept for waves and simple harmonic motion and does an example question for each one. Created by David SantoPietro.

Subject:
Physical Science
Physics
Material Type:
Lesson
Provider:
Provider Set:
Author:
David SantoPietro
06/29/2018
Educational Use
Rating
0.0 stars

Students work in groups to create soap bubbles on a smooth surface, recording their observations from which they formulate theories to explain what they see (color swirls on the bubble surfaces caused by refraction). Then they apply this theory to thin films in general, including porous films used in biosensors, listing factors that could change the color(s) that become visible to the naked eye, and learn how those factors can be manipulated to give information on gene detection. Finally (by experimentation or video), students see what happens when water is dropped onto the surface of a Bragg mirror.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
09/18/2014
Unrestricted Use
CC BY
Rating
0.0 stars

Simulate the original experiment that proved that electrons can behave as waves. Watch electrons diffract off a crystal of atoms, interfering with themselves to create peaks and troughs of probability.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Sam McKagan
Sam Reid
10/02/2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This activity from the Exploratorium provides an introduction to the diffraction of light which indicates its wavelike properties. Two pencils are used to create a slit through which a flashlight bulb or candle˘ďď_s light is examined. The site contains an explanation of the observed interference patterns, additional materials that can be experimented with, and an extension activity. This activity is part of Exploratorium's Science Snacks series.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
06/12/2006
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This optics material focuses on basics of ray optics and wave optics. A small assessment also included

Subject:
Physics
Material Type:
Assessment
Author:
Aravinthan K
05/05/2020
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

MAS.450 is a laboratory course about holography and holographic imaging.
This course teaches holography from a scientific and analytical point of view, moving from interference and diffraction to imaging of single points to the display of three-dimensional images. Using a “hands-on” approach, students explore the underlying physical phenomena that make holograms work, as well as designing laboratory setups to make their own images. The course also teaches mathematical techniques that allow the behavior of holography to be understood, predicted, and harnessed.
Holography today brings together the fields of optics, chemistry, computer science, electrical engineering, visualization, three-dimensional display, and human perception in a unique and comprehensive way. As such, MAS.450 offers interesting and useful exposure to a wide range of principles and ideas. As a course satisfying the Institute Laboratory Requirement, MAS.450 teaches about science, scientific research, and the scientific method through observation and exploration, hinting at the excitement that inventors feel before they put their final equations to paper.

Subject:
Applied Science
Arts and Humanities
Computer Science
Engineering
Graphic Arts
Life Science
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Benton, Stephen
Halle, Michael
02/01/2003
Educational Use
Rating
0.0 stars

Students learn and use the properties of light to solve the following challenge: "A mummified troll was discovered this summer at our school and it has generated lots of interest worldwide. The principal asked us, the technology classes, to design a security system that alerts the police if someone tries to pilfer our prized possession. How can we construct a system that allows visitors to view our artifact during the day, but invisibly protects it at night in a cost-effective way?"

Subject:
Applied Science
Education
Engineering
Material Type:
Full Course
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
09/18/2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Dunmeyer, David
Warde, Cardinal
09/01/2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Barbastathis, George
Oh, Se Baek
Sheppard, Colin
02/01/2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product. Analytical and numerical tools used in optical design are emphasized. Graduate students are required to complete assignments with stronger analytical content, and an advanced design project.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Fang, Nicholas X.
02/01/2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Vibrations and waves are everywhere. If you take any system and disturb it from a stable equilibrium, the resultant motion will be waves and vibrations. Think of a guitar string—pluck the string, and it vibrates. The sound waves generated make their way to our ears, and we hear the string’s sound. Our eyes see what’s happening because they receive the electromagnetic waves of the light reflected from the guitar string, so that we can recognize the beautiful sinusoidal waves on the string. In fact, without vibrations and waves, we could not recognize the universe around us at all!

The amazing thing is that we can describe many fascinating phenomena arising from very different physical systems with mathematics. This course will provide you with the concepts and mathematical tools necessary to understand and explain a broad range of vibrations and waves. You will learn that waves come from many interconnected (coupled) objects when they are vibrating together. We will discuss many of these phenomena, along with related topics, including mechanical vibrations and waves, sound waves, electromagnetic waves, optics, and gravitational waves.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lee, Yen-Jie
09/01/2016
Unrestricted Use
CC BY
Rating
0.0 stars

Psychology is designed to meet scope and sequence requirements for the single-semester introduction to psychology course. The book offers a comprehensive treatment of core concepts, grounded in both classic studies and current and emerging research. The text also includes coverage of the DSM-5 in examinations of psychological disorders. Psychology incorporates discussions that reflect the diversity within the discipline, as well as the diversity of cultures and communities across the globe.Senior Contributing AuthorsRose M. Spielman, Formerly of Quinnipiac UniversityContributing AuthorsKathryn Dumper, Bainbridge State CollegeWilliam Jenkins, Mercer UniversityArlene Lacombe, Saint Joseph's UniversityMarilyn Lovett, Livingstone CollegeMarion Perlmutter, University of Michigan

Subject:
Psychology
Social Science
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
02/14/2014
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars
Rating
0.0 stars
Subject:
Psychology
Social Science
Material Type:
Module
07/10/2017
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

By the end of this section, you will be able to:Compare and contrast the two types of amnesiaDiscuss the unreliability of eyewitness testimonyDiscuss encoding failureDiscuss the various memory errorsCompare and contrast the two types of interference

Subject:
Psychology
Social Science
Material Type:
Module
07/10/2017
Unrestricted Use
CC BY
Rating
0.0 stars

When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to explore how measurements change the waves and the patterns they produce on the screen.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam McKagan
Sam Reid
09/09/2006
Educational Use
Rating
0.0 stars

Through this concluding lesson and its associated activity, students experience one valuable and often overlooked skill of successful scientists and engineers communicating your work and ideas. They explore the importance of scientific communication, including the basic, essential elements of communicating new information to the public and pitfalls to avoid. In the associated activity, student groups create posters depicting their solutions to the unit's challenge question accurate, efficient methods for detecting cancer-causing genes using optical biosensors which includes providing a specific example with relevant equations. Students are also individually assessed on their understanding of refraction via a short quiz. This lesson and its associated activity conclude the unit and serve as the culminating Go Public phase of the Legacy Cycle, providing unit review and summative assessment.

Subject:
Applied Science
Communication
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
09/18/2014
Educational Use
Rating
0.0 stars

By this point in the unit, students have learned all the necessary information and conceptualized a design for how an optical biosensor could be used to detect a target strand of DNA associated with a cancer-causing gene as their solution to the unit's challenge question. Now student groups act as engineers again, using a poster format to communicate and prove the validity of the design. Successful posters include a description of refraction, explanations of refraction in a thin film, and the factors that can alter the interference pattern of a thin film. The posters culminate with an explanation of what is expected to be seen in a biosensing device of this type if it were coupled to a target molecule, proven with a specific example and illustrated with drawings and diagrams throughout. All the poster elements combine to prove the accuracy and viability of this method of gene detection. Together with its associated lesson, this activity functions as part of the summative assessment for this unit.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caleb Swartz
09/18/2014
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave changes. Move the listener around and hear what she hears.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Ron LeMaster
10/22/2006
Unrestricted Use
CC BY
Rating
0.0 stars

This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave changes. Move the listener around and hear what she hears.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider: