Students create silver nanoparticles using a chemical process; however, since these particles …
Students create silver nanoparticles using a chemical process; however, since these particles are not observable to the naked eye, they use empirical evidence and reasoning to discover them. Students first look for evidence of a chemical reaction by mixing various solutions and observing any reactions that may occur. Students discover that copper and tannic acids from tea reduce silver nitrate, which in turn form silver. They complete the reaction, allow the water to evaporate, and observe the silver nanoparticles they created in plastic dishes using a stereo microscope. Students iterate on their initial process and test to see if they can improve the manufacturing process of silver nanoparticles.
This course introduces students to the fundamental concepts of physical computing systems …
This course introduces students to the fundamental concepts of physical computing systems through hands-on, real-life applications. Physical computing forms the basis of smart devices, wearables like smart watches, e-textiles / fashion, IoT (Internet of Things) devices, and hardware start-up
This course teaches students to design electronic devices that interact with the physical world by building circuits and developing software algorithms that run on a microcontroller. These devices will also be connected to the internet so they can send sensor data to dashboards and be remotely operated from a computer or mobile device.
This course is designed specifically for university undergraduate students from all majors. It presumes no in-depth knowledge of physics or math nor prior experience with electronics. The only expected prerequisite knowledge is introductory experience with procedural programming (i.e. variables, functions, loops).
Students learn the basic properties of light the concepts of light absorption, …
Students learn the basic properties of light the concepts of light absorption, transmission, reflection and refraction, as well as the behavior of light during interference. Lecture information briefly addresses the electromagnetic spectrum and then provides more in-depth information on visible light. With this knowledge, students better understand lasers and are better prepared to design a security system for the mummified troll.
Open textbook in statics and dynamics for engineering undergraduates. Covers particles and …
Open textbook in statics and dynamics for engineering undergraduates. Covers particles and rigid bodies (extended bodies), structures (trusses), simple machines, kinematics, and kinetics, as well as introductory vibrations. Includes text, videos, images, and worked examples (written and video).
In this high school physical sciences unit, students investigate why some substances …
In this high school physical sciences unit, students investigate why some substances absorb heat when they react, while others release it. Students first solve the mystery of where the energy goes in endothermic reactions by examining salt dissolution and using magnets as models for bonds. They then expand their investigations to look into where the energy comes from in exothermic reactions. The model they continue to develop using magnets, helps them account for why breaking bonds absorbs energy from the surroundings and forming bonds releases energy back into the surroundings. The end of the unit naturally motivates a new question to pursue in future units, “Why are some types of particles more attracted to one another than others?"
Quantum mechanics–even in the ordinary, non-relativistic, “particle” formulation that will be the …
Quantum mechanics–even in the ordinary, non-relativistic, “particle” formulation that will be the primary focus of this course–has been a staggeringly successful physical theory, surely one of the crowning achievements of 20th century science. It’s also rather bizarre–bizarre enough to lead very intelligent and otherwise sensible people to make such claims as that the universe is perpetually splitting into many copies of itself, that conscious minds have the power to make physical systems “jump” in unpredictable ways, that classical logic stands in need of fundamental revision, and much, much more. In this course, we intelligent and sensible people will attempt to take a sober look at these and other alleged implications of quantum mechanics, as well as certain stubborn problems that continue to trouble its foundations. Along the way, we will take plenty of time out to discuss philosophical questions about science that quantum mechanics raises in new and interesting ways: e.g., what it means to attribute probabilities to physical events, what the aims of scientific inquiry are (does it aim at something true, or merely at something useful?), what the role of observation is in constructing a scientific theory, what it means to say that there is an “objective” physical world, whether something as basic as logic can be viewed as an empirical discipline, whether there can be meaningful scientific questions whose answers cannot possibly be settled by experiment, and more.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.