In this place-based lesson, students will dissect an apple fruit to learn …
In this place-based lesson, students will dissect an apple fruit to learn more about its different parts. Includes activity instructions, extension activities, songs and rhymes, anatomy of an apple student worksheet, and sink or float student worksheet.
NGSS: K-ESS3-1, 1-LS1-1
Time: 30 minutes
Materials: "Apples Grow on Trees" or other book about apples, knife, cutting board, at least three apples, apple parts tray, and apple dissection worksheet.
In this course from Puget Sound Educational Service District in Washington state, …
In this course from Puget Sound Educational Service District in Washington state, teachers will learn how to intentionally connect students, families, and community knowledge and practices to scientific concepts. Making these connections visible is critical for effective and equitable science learning experiences.Together, teachers will delve into strategies that encourage students to see themselves as active participants in the natural world, fostering empathy and a sense of responsibility towards the environment. Educators will learn how to shift students’ perspectives from being apart from nature to being an integral part of it. Teachers will learn how to facilitate wondering conversations that support student curiosity and sensemaking.
This is module 1 of the Beyond Classroom Walls professional learing course from …
This is module 1 of the Beyond Classroom Walls professional learing course from Puget Sound Educational Service District in Washington state.In this course from Puget Sound Educational Service District in Washington state, teachers will learn how to intentionally connect students, families, and community knowledge and practices to scientific concepts. Making these connections visible is critical for effective and equitable science learning experiences.
This is module 2 of the Beyond Classroom Walls professional learing course from …
This is module 2 of the Beyond Classroom Walls professional learing course from Puget Sound Educational Service District in Washington state.In this course, teachers will learn how to intentionally connect students, families, and community knowledge and practices to scientific concepts. Making these connections visible is critical for effective and equitable science learning experiences.
This is module 3 of the Beyond Classroom Walls professional learing course from …
This is module 3 of the Beyond Classroom Walls professional learing course from Puget Sound Educational Service District in Washington state.In this course, teachers will learn how to intentionally connect students, families, and community knowledge and practices to scientific concepts. Making these connections visible is critical for effective and equitable science learning experiences.
This is module 4 of the Beyond Classroom Walls professional learing course from …
This is module 4 of the Beyond Classroom Walls professional learing course from Puget Sound Educational Service District in Washington state.In this course, teachers will learn how to intentionally connect students, families, and community knowledge and practices to scientific concepts. Making these connections visible is critical for effective and equitable science learning experiences.
The primary goal of this lab is to develop basic ArcGIS skills …
The primary goal of this lab is to develop basic ArcGIS skills for geomorphology students and give them a taste of what is possible in GIS. The lab is written for the GIS novice, and thus includes detailed instructions for small tasks. The GIS basics are taught via an exploration of river meandering and bank and bluff erosion in a local (turbidity-impaired) stream in Duluth, Minnesota: Amity Creek. The students visited Amity Creek the previous week and mapped in all locations along the river corridor with clear evidence of recent landsliding. This lab leads them through how to bring those field-collected GPS data into ArcGIS to both create maps and make measurements. They also look at river meandering over time at a single site where recent bluff stabilization work was completed to slow channel migration and lower the amount of fine sediment from entering the stream.This lab could be adapted to other locations, although I have also included all of the data specific to this site.
Each spring, students in a 300-level field course collect samples from urban …
Each spring, students in a 300-level field course collect samples from urban community gardens to monitor soil lead concentrations.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students characterize how climate change impacts natural hazards and pose research-based solutions …
Students characterize how climate change impacts natural hazards and pose research-based solutions to the county Emergency Management Agency. Presentations require the use of local data, created figures, and reliable sources. This activity builds from an assignment which has students identify and describe projected local climate trends using the USGS National Climate Change Viewer followed by Unit 1 and 2 of the Map Your Hazards InTeGrate Module.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In Part 2 of this unit, student groups will plan and execute …
In Part 2 of this unit, student groups will plan and execute the field collection of sensory data (scents and/or sounds) using previously developed data collection protocols. The advantage of using sensory data is that students are equipped with the analytical equipment (ears and nose) and are familiar with its use. Class time will be devoted to developing a field investigation plan. Students will create guiding questions and choose a study area, develop or obtain maps of the study area, assign field roles to group members, and develop a timeline for completion of fieldwork. The plan will need to ensure proper execution of data collection protocol, a clear record of the data collected, and a record of field conditions. Careful planning of fieldwork is important to ensure that the time in the field is utilized efficiently and effectively and that the data collected meets the intended requirements. Likewise, an environmental professional (such as a geoscientist) undertaking an environmental investigation would need to develop a field investigation plan to meet the needs of the investigation.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Detailed information is provided in activity description/assignment and an example lab handout …
Detailed information is provided in activity description/assignment and an example lab handout that assisted students in conducting their research.
Initial guidelines given to students:
Choose a location (where you are from, a place that is of interest to you) and investigate how projected changes in climate will affect that area. What are the expected changes in temperature, precipitation, storms, droughts, sea level, seasonality, etc? How will this affect the habitat of the area (for humans, animals, and plants)? How will this affect the local economy? What actions can the people that live in this area take to lessen the impacts of changing climate? Students write a scientific style paper on their findings, and present their research to the class in ~10 minute oral presentations (alternatively a poster session could be used).
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
The introduction and examination of the food, energy, and water connection -- …
The introduction and examination of the food, energy, and water connection -- as a system in Unit 1 -- established the dictates of human dependency on and human modification of the environment. We continue a logical progression of what this means in Unit 2, with a focus on how people see, confront, and solve their resource challenges in the light of their need for affordable, accessible, healthy, sustainably-grown food. This unit introduces and explores the concepts, themes, and practices of: urban agriculture, urban farming, local food, food insecurity, food deserts, health & wellness education, community food gardens, community food dialogue, public policy, civic engagement, volunteerism, expert technical assistance, land reclamation, grants and incentives, entrepreneurship, and community economic development.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students will collect and analyze relevant social data on individual and community …
Students will collect and analyze relevant social data on individual and community knowledge, risk perception and preparedness within their local social networks.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
This unit presents an applied Case Study example and the associated concepts …
This unit presents an applied Case Study example and the associated concepts related to designing a seismic survey and analyzing the data. Parts of the instrument are discussed and practical experience simulating travel time arrivals on a travel time-offset plot are presented. A real dataset from the Case Study site at Codorus Creek, York, PA is presented and analysis strategies are discussed.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students will develop protocols for the collection of sensory …
In this unit, students will develop protocols for the collection of sensory data (scents and/or sounds), plan and execute the field collection of sensory data using developed protocols, analyze collected data, and create a map that communicates findings and impacts on the local population. The advantage of using sensory data is that students are equipped with the analytical equipment (ears and nose) and are familiar with its use. However, students may not have taken the time to consider the variety of perceptions that occur within a group of people who are sharing a sensory experience and the impact that variation can have when collecting and analyzing data and subsequently communicating the results. In this unit, as in the entire module, sensory data is considered in two contexts: First, as an indicator of environmental conditions, and, in some instances, environmental disruption. Second, as a proxy for data that is not as easily collected or as readily analyzed such as air or water samples. One of the challenges of developing these protocols will be discerning individual components from a complex system and developing an approach for systematically recording these data. This, though, gives students important exposure to the challenges of understanding and characterizing today's societal problems, which tend to include many interrelated dynamic causes.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, students work in small groups to collect and record …
In this unit, students work in small groups to collect and record data about soils using various soil testing and classification methods at a series of stations. The methods they use are relevant to the societal issue of their choice that involves soil. Through this process of testing, data collection, and interpretation, they develop the baseline soil content knowledge and skills necessary to create their own Soils, Systems, and Society Kit.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
In this unit, student groups will use sensory data (scents and/or sounds) …
In this unit, student groups will use sensory data (scents and/or sounds) collected in the field to create maps of the sensory environment and relate their findings to larger environmental problems identified in their guiding questions and hypotheses. This unit is designed to build upon prior units in which students develop guiding questions and hypotheses, field data collection protocols, and field investigation plans. The field investigation will require a base map on which to record data and a final map on which to display data and characterize the study area and environmental impact of the mapped data. The base map will be derived from aerial imagery if the investigation site is outside. The base map will be derived from a building schematic or floor map if an interior location is mapped. Class time will be devoted to developing maps on which students will display the data collected in the field. Students will use Google Earth or other online resources to obtain aerial (or other schematic) imagery of their study area. They may use an aerial image as a base map or they may draw their own maps based on the aerial imagery. If the site is indoors, a blueprint or floor plan can be the base map, or students can draw their own maps based on an existing image or schematic. Sensory mapping allows students to identify scent plumes as they migrate away from source locations. Odor plumes and sounds are analogous to plumes of contaminants that migrate through groundwater, surface water, and air. In many instances, the presence of unusual odors is an indicator of migrating contaminants and can lead to sampling by environmental professionals (including geoscientists) to confirm and quantify contaminant migration through the environment. These maps serve as representations of the complex odor or sound systems in the students' chosen geographical areas.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Unit 6 covers the preliminary design of a rainwater harvesting unit. Pre-class …
Unit 6 covers the preliminary design of a rainwater harvesting unit. Pre-class assignments provide background on rainwater harvesting. An active learning exercise steps student teams through the process of sizing a rainwater harvesting cistern, using water demand estimates from Units 4 and 5. The activity leads into a revision of the water system mind map developed in previous units.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Students work in small groups to record interviews capturing public attitudes on …
Students work in small groups to record interviews capturing public attitudes on various types of waste. Students then edit shorter videos into a larger film that incorporates student analysis and synthetic commentary on waste in our society.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
Wetlands provide an ideal field hydrology laboratory because the water table is …
Wetlands provide an ideal field hydrology laboratory because the water table is so close to the land surface. Eight field exercises, in which students generate their own data, are presented that demonstrate surface-water, vadose-zone, and groundwater hydrology concepts. Standard field equipment and methods are used to conduct investigations including measuring stream discharge, estimating groundwater seepage to a stream and/or pond, preparing a topographic profile showing the water-table configuration, measuring infiltration rates and estimating constant infiltration capacity, measuring field-saturated hydraulic conductivity, estimating hydraulic conductivity from slug tests, and determining the direction, hydraulic gradient, and specific discharge of groundwater. These labs compliment lecture material commonly covered in a first semester hydrology course.
(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.