Arabic 4 fun includes five categories: alphabet, numbers, shapes, colors, and fruit …
Arabic 4 fun includes five categories: alphabet, numbers, shapes, colors, and fruit names. Within each category, there is an introduction which explains the lesson, three exercises (easy, medium, & hard), and a memory game. The memory game includes the words written out in Arabic. The user may self-study or watch the explained lesson.
This simulation gives students the opportunity to explore both area and perimeter …
This simulation gives students the opportunity to explore both area and perimeter of 2-dimensional shapes. Students can explore by creating shapes and having the sim calculate the area and perimeter. They can also play a game where the goal is to create a shape with a specified area or area and perimeter, or to calculate the area and/or perimeter of a given shape.
Students gain awareness of shapes in architecture by creating a painting of …
Students gain awareness of shapes in architecture by creating a painting of their school and writing a reflective summary of their study of architecture.
Students learn about isometric drawings and practice sketching on triangle-dot paper the …
Students learn about isometric drawings and practice sketching on triangle-dot paper the shapes they make using multiple simple cubes. They also learn how to use coded plans to envision objects and draw them on triangle-dot paper. A PowerPoint® presentation, worksheet and triangle-dot (isometric) paper printout are provided. This activity is part of a multi-activity series towards improving spatial visualization skills.
This purpose of this task is for students to understand how to …
This purpose of this task is for students to understand how to partition shapes into equal pieces. This task starts students with concrete representations of the shapes that they can fold and cut, so that later they will understand more abstract representations like diagrams and symbols. Part one provides students with opportunities to manipulate paper shapes, folding them to create equal parts.
This task presents students with some creative geometric ways to represent the …
This task presents students with some creative geometric ways to represent the fraction one half. The goal is both to appeal to students' visual intuition while also providing a hands on activity to decide whether or not two areas are equal.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to use geometric properties to solve problems. In particular, the lesson will help you identify and help students who have the following difficulties: solving problems by determining the lengths of the sides in right triangles; and finding the measurements of shapes by decomposing complex shapes into simpler ones. The lesson unit will also help students to recognize that there may be different approaches to geometrical problems, and to understand the relative strengths and weaknesses of those approaches.
In Module 5, students consider partwhole relationships through a geometric lens. The …
In Module 5, students consider partwhole relationships through a geometric lens. The module opens with students identifying the defining parts, or attributes, of two- and three-dimensional shapes, building on their kindergarten experiences of sorting, analyzing, comparing, and creating various two- and three-dimensional shapes and objects. Students combine shapes to create a new whole: a composite shape. They also relate geometric figures to equal parts and name the parts as halves and fourths. The module closes with students applying their understanding of halves to tell time to the hour and half hour.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
Module 2 explores two-dimensional and three-dimensional shapes. Students learn about flat and …
Module 2 explores two-dimensional and three-dimensional shapes. Students learn about flat and solid shapes independently as well as how they are related to each other and to shapes in their environment. Students begin to use position words when referring to and moving shapes. Students learn to use their words to distinguish between examples and non-examples of flat and solid shapes.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
Kindergarten comes to a close with another opportunity for students to explore …
Kindergarten comes to a close with another opportunity for students to explore geometry in Module 6. Throughout the year, students have built an intuitive understanding of two- and three-dimensional figures by examining exemplars, variants, and non-examples. They have used geometry as a context for exploring numerals as well as comparing attributes and quantities. To wrap up the year, students further develop their spatial reasoning skills and begin laying the groundwork for an understanding of area through composition of geometric figures.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
Overall Goal: During this lesson we will cover basic shapes and learn …
Overall Goal: During this lesson we will cover basic shapes and learn how they can be used in everyday objects. Our goal is for students to know the basic shapes, find them in objects such as playgrounds, be able to create their own playground using shapes, and finally be able to tell the class about the playground they made and the shapes used. Standard: K.G.3: Model shapes in the world by composing shapes from objects (e.g., sticks and clay balls) and drawing shapes. Learning Objectives: The students will be able to show they know what each of the basics shape are by correctly drawing a square, triangle, rectangle, circle, and oval.Students will be able to create playground with the basic shapes by using everyday objects such as play-doh, craft sticks, etc.Students will be able to complete the project by creating their dream playground; using all of the shapes covered in the lesson.Students can explain their playgrounds and shapes they used, and why their specific playground represents their “dream playground” by presenting their project to the class. Key Terms:SquareRectangleTriangleOvalCircle Lesson Introduction:We will visit the school playground to have the students find the different shapes in the playground equipment. We want students to use the playground visit to help them decide how they would build their dream playground using the basic shapes. We will give the students a packet (found in the Resources section) that includes a few activities for them to do before the main lesson. They will take this to the playground and fill out the second page by writing down the different playground structures that fit each shape. They will be able to explore the playground on their own, so that they can have different answers than each other. Main Lesson:In class, we will have the students create, by drawing, their ‘dream playground’ using the specific basic shapes they are given to work with (squares, triangles, circles, rectangles, and ovals). They will be given 20 minutes to complete their drawing. They will be able to draw this on paper or use a computer application to create this.After this, the students will be given play-doh and popsicle sticks to recreate the shapes and structures that they had on their paper. The crafting process should take around 50 minutes. The drawings and crafts will be assessed by if the students correctly demonstrate their knowledge of the different shapes and how to create them.At the end, the kids will present their own playgrounds to the class and show what shapes they used and be able to explain and defend why it is their dream playground. This is so that the teacher can tell if the student knows the shapes and is able to defend their argument of what makes it a dream playground. The students will be able to use pencil and paper to draw or use tablets/iPads and use a drawing application. Lesson Ending:When the students are done creating their projects, they will each present their playgrounds to the class and explain the individual shapes that they used. The students will also explain why they believe their playground model is the best. The students should answer the following questions when they defend why their playground is the best. How many of each shape are in your playground? Is one of the five shapes better for making playgrounds than the others and why? The way that we can assess is if the student created the shapes correctly and correctly referenced them in their presentation. Rubric:The students will be graded as Good, Average, or Poor. The following is what they are going to be graded on:Students know basic shapesStudents use shapes correctly to build a playgroundStudents complete all parts of the projectStudents present their playgrounds to the class and can explain how they built their playground with the basic shapes Differentiation:This project should not affect students of different gender, race, culture, or sexual identity. Students with behavioral challenges will be worked more one-on-one than the other students to make sure that any confusion or frustration will be handled. The higher ability learners can go beyond the four shapes specified, if they feel comfortable. The project does not require out of school time where they would absolutely need a computer or Wifi access.Examples:If high ability students feel like they can add shapes that are not on the required list, they may do so with permission from the teacher. They will not be given any extra credit for adding other shapes, but this is a good way for the teachers to see where some students are at academically.If there is a child with dyslexia they will receive extra help from the teacher to be sure that they can accurately read the instructions on the papers.If a student needs to use a computer drawing application for sketching the playground because of a disability but doesn’t understand how to use it, they may come into class early to spend some extra time navigating the site.Since the students will be doing a worksheet after the activity, there might be students who struggle with reading. If the students struggle with reading the worksheet, they may ask, and we will help them through the parts that they find confusing. If the student has translation issues with some of the words, we will also help them translate it. This will be done just through being familiar with the material and specific language. Anticipated Difficulties:There could be difficulty with children being distracted at the playground and while crafting. We will need to be sure that everyone is staying on task by keeping them engaged during all of the activities. Children can sometimes become distracted if they are just listening to someone speak and by keeping them engaged and involving them during all of the lesson they will be more likely to stay focused. When on the playground we can use students to help point out the shapes that we find and also ask questions during this time to keep students attentive. Students might be at different learning levels and could struggle with learning the shapes. If so, we could always split the children into a few groups based on learning levels to help the lesson run smoother.
Note: This lesson was designed for students with autism. The students will …
Note: This lesson was designed for students with autism. The students will review a few elements of art, specifically colors, shapes, and different types of lines. They will identify these elements in Vincent van Gogh's painting Irises. The students will then practice drawing different types of lines and shapes in different colors, and will use these elements of art to produce an original crayon-resist piece inspired by Irises.
The goal of this task is to provide an opportunity for students …
The goal of this task is to provide an opportunity for students to apply a wide range of ideas from geometry and algebra in order to show that a given quadrilateral is a rectangle. Creativity will be essential here as the only given information is the Cartesian coordinates of the quadrilateral's vertices. Using this information to show that the four angles are right angles will require some auxiliary constructions. Students will need ample time and, for some of the methods provided below, guidance. The reward of going through this task thoroughly should justify the effort because it provides students an opportunity to see multiple geometric and algebraic constructions unified to achieve a common purpose.
Spatial visualization is the study of two- and three-dimensional objects and the …
Spatial visualization is the study of two- and three-dimensional objects and the practice of mental manipulation of objects. Spatial visualization skills are important in a range of subjects and activities like mathematics, physics, engineering, art and sports! In this lesson, students are introduced to the concept of spatial visualization and measure their spatial visualization skills by taking the provided 12-question quiz. Following the lesson, students complete the four associated spatial visualization activities and then re-take the quiz to see how much their spatial visualization skills have improved.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.