Construct and measure the energy efficiency and solar heat gain of a …
Construct and measure the energy efficiency and solar heat gain of a cardboard model house. Use a light bulb heater to imitate a real furnace and a temperature sensor to monitor and regulate the internal temperature of the house. Use a bright bulb in a gooseneck lamp to model sunlight at different times of the year, and test the effectiveness of windows for passive solar heating.
This article lists common misconceptions about light, heat, and the sun. It …
This article lists common misconceptions about light, heat, and the sun. It provides formative assessment probes and information about teaching for conceptual change.
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel …
Students learn how the total solar irradiance hitting a photovoltaic (PV) panel can be increased through the use of a concentrating device, such as a reflector or lens. This is the final lesson in the Photovoltaic Efficiency unit and is intended to accompany a fun design project (see the associated Concentrating on the Sun with PVs activity) to wrap up the unit. However, it can be completed independently of the other unit lessons and activities.
Students design, build and test reflectors to measure the effect of solar …
Students design, build and test reflectors to measure the effect of solar reflectance on the efficiency of solar PV panels. They use a small PV panel, a multimeter, cardboard and foil to build and test their reflectors in preparation for a class competition. Then they graph and discuss their results with the class. Complete this activity as part of the Photovoltaic Efficiency unit and in conjunction with the Concentrated Solar Power lesson.
Student groups are given a set of materials: cardboard, insulating materials, aluminum …
Student groups are given a set of materials: cardboard, insulating materials, aluminum foil and Plexiglas, and challenged to build solar ovens. The ovens must collect and store as much of the sun's energy as possible. Students experiment with heat transfer through conduction by how well the oven is insulated and radiation by how well it absorbs solar radiation. They test the effectiveness of their designs qualitatively by baking something and quantitatively by taking periodic temperature measurements and plotting temperature vs. time graphs. To conclude, students think like engineers and analyze the solar oven's strengths and weaknesses compared to conventional ovens.
D-Lab Development addresses issues of technological improvements at the micro level for …
D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to be visited as well as an introduction to the local languages.
Students design and build a model city powered by the sun! They …
Students design and build a model city powered by the sun! They learn about the benefits of solar power, and how architectural and building engineers integrate photovoltaic panels into the design of buildings.
The Challenge Question of the Legacy Cycle draws the student into considering …
The Challenge Question of the Legacy Cycle draws the student into considering the engineering ingenuity of nature. It will force him to analyze, appreciate and understand the wisdom of these designs as the student team focuses on meeting each of the challenge's requirements. The student is asked, with his team members, to envision a sustainable design for a future guest village within the Saguaro National Park, outside of Tucson, Arizona. What issues need to be addressed to support the comforts of park visitors without compromising the natural resources or endangering the endemic species of the area? A deeper scope of application will reveal extensions of this design in the incorporation of urban planning and systems design. It also strengthens the concept of manufacturing and building without producing waste or pollution.
A favorite movie, “E.T. the Extra-Terrestrial,” provides the backdrop scenario for students …
A favorite movie, “E.T. the Extra-Terrestrial,” provides the backdrop scenario for students to discover how harnessing the sun’s energy provides unlimited power for many purposes, including the operation of thousands of satellites in orbit today and communication over long distances. In the movie, E.T., an alien life form, is stranded on Earth and befriends Elliott, the little boy who rescues him. As E.T. becomes gravely ill, Elliott realizes that E.T. needs to return home in order to survive. To arrange for transport, E.T. must “phone home.” Teams engage in an interactive quest to answer the question: E.T. phone home—fact or fiction? They must discover four clues in order to unlock four padlocks on a box that contains the answer. This requires them to watch a one-minute online video, complete a crossword puzzle, scan three QR codes for articles to read, and put together a cut-apart puzzle with an invisible ink clue. They watch short online movie excerpt videos to kick off and wrap up the activity.
This video describes how concentrating solar power (CSP) technologies reflect and collect …
This video describes how concentrating solar power (CSP) technologies reflect and collect solar energy to generate electricity. This video explains what CSP is, how it works, and focuses on parabolic troughs.
This video, from the US Department of Energy, shows the basics of …
This video, from the US Department of Energy, shows the basics of how a PV panel converts light radiated from the sun into usable power, whether on the electric grid or off, and without emissions or the use of fossil fuels.
In this card game, participants trace back the source of energy for …
In this card game, participants trace back the source of energy for a variety of items to find that they ultimately derive from the Sun. This is a simple activity that lets students move around and discover an aspect of their everyday lives that may not have been apparent to them already.
This online activity challenges students to design a renewable energy system for …
This online activity challenges students to design a renewable energy system for one of five different cities, each with different energy resource potential and budgets. Students can test their designs using real-time weather data in each city.
Several activities are included to teach and research the differences between renewable …
Several activities are included to teach and research the differences between renewable and non-renewable resources and various energy resources. The students work with a quantitative, but simple model of energy resources to show how rapidly a finite, non-renewable energy sources can be depleted, whereas renewable resources continue to be available. The students then complete a homework assignment or a longer, in-depth research project to learn about how various technologies that capture energy resources for human uses and their pros and cons. Fact sheets are included to help students get started on their investigation of their assigned energy source.
Fact sheets are provided for several different energy resources as a starting …
Fact sheets are provided for several different energy resources as a starting point for students to conduct literature research on the way these systems work and their various pros and cons. Students complete a worksheet for homework or take in-class time for research and presentation of their findings to the class. This approach requires students to learn for themselves and teach each other, rather than having the teacher lecture about the subject matter.
This visualization includes a series of flow charts showing the relative size …
This visualization includes a series of flow charts showing the relative size of primary energy resources and end uses in the United States for the years 2008-2012.
Posters are provided for several different energy conversion systems. Students are provided …
Posters are provided for several different energy conversion systems. Students are provided with cards that give the name and a description of each of the components in an energy system. They match these with the figures on the diagram. Since the groups look at different systems, they also describe their results to the class to share their knowledge.
This issue of the free online magazine, Beyond Penguins and Polar Bears, …
This issue of the free online magazine, Beyond Penguins and Polar Bears, explores the Sun's role in warming Earth, the albedo (reflectivity) of Earth's diverse surfaces, and how the decline of Arctic sea ice is affecting Earth's energy balance. Science lessons introduce the concepts of solar energy, reflection, and absorption to elementary students. The issue also includes an overview of the natural resources and energy sources found in the polar regions as well as lessons that allow students to develop the concepts of natural resources, energy sources, and energy efficiency.
What is energy? It's the hot in heat, the glow in light, …
What is energy? It's the hot in heat, the glow in light, the push in wind, the pound in water, the sound of thunder and the crack of lightening. It is the pull that keeps us (and everything else!) from simply flying apart, and the promise of an oak deep in an acorn. It is all the same, and it is all different. Sunshine and waterfalls won't start your car, and wind won't run the dishwasher. But, if we match the form and timing of the energy with your needs, all of these things could be true. Energy in a Changing World is about the full arc of energy transformation, delivery, use, economics and environmental impact, especially climate change.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.