This class analyzes complex biological processes from the molecular, cellular, extracellular, and …
This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work culminates in the preparation of a unique grant application in an area of biological networks.
This textbook is based on a different paradigm for organizing an engineering …
This textbook is based on a different paradigm for organizing an engineering science core --- a systems, accounting and modeling approach --- that emphasizes the common, underlying concepts of engineering science. Although this approach is not new, as most graduate students have been struck by this idea sometime during their graduate education, its use as the organizing principle for an undergraduate curriculum is new. By focusing on the underlying concepts and stressing the similarities between subjects that are often perceived by students (and taught by faculty) as unconnected topics, this approach provides engineering students a foundational framework for recognizing and building connections as they travel through their education.
Lean thinking, as well as associated processes and tools, have involved into …
Lean thinking, as well as associated processes and tools, have involved into a ubiquitous perspective for improving systems particularly in the manufacturing arena. With application experience has come an understanding of the boundaries of lean capabilities and the benefits of getting beyond these boundaries to further improve performance. Discrete event simulation is recognized as one beyond-the-boundaries of lean technique. Thus, the fundamental goal of this text is to show how discrete event simulation can be used in addition to lean thinking to achieve greater benefits in system improvement than with lean alone. Realizing this goal requires learning the problems that simulation solves as well as the methods required to solve them. The problems that simulation solves are captured in a collection of case studies. These studies serve as metaphors for industrial problems that are commonly addressed using lean and simulation.
Survey of principles underlying the structure and function of the nervous system, …
Survey of principles underlying the structure and function of the nervous system, integrating molecular, cellular, and systems approaches. Topics: development of the nervous system and its connections, cell biology or neurons, neurotransmitters and synaptic transmission, sensory systems of the brain, the neuro-endocrine system, the motor system, higher cortical functions, behavioral and cellular analyses of learning and memory. First half of an intensive two-term survey of brain and behavioral studies for first-year graduate students.
In this video segment from Cyberchase, the CyberSquad and Digit construct a …
In this video segment from Cyberchase, the CyberSquad and Digit construct a physical profile of the person who kidnapped Choocroca, a giant cybercrocodile.
This video segment adapted from the Atmospheric Radiation Program explains the differences …
This video segment adapted from the Atmospheric Radiation Program explains the differences in the formation of tropical convective cloud systems over islands and over the ocean.
This course explores the reciprocal relationships among design, science, and technology by …
This course explores the reciprocal relationships among design, science, and technology by covering a wide range of topics including industrial design, architecture, visualization and perception, design computation, material ecology, and environmental design and sustainability. Students will examine how transformations in science and technology have influenced design thinking and vice versa, as well as develop methodologies for design research and collaborate on design solutions to interdisciplinary problems.
This course introduces you to modern manufacturing with four areas of emphasis: …
This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices.
In this Module, Students will learn the basis and differences between Social …
In this Module, Students will learn the basis and differences between Social Economic Systems. They wil be to argues their point of view and whatsmore, give an essay opinion about the topic.Throught differents activities and material, student should create constructs of the topic and stablish a new knowledge. It is important to clarify any doubt before starting the activities.Ask your professor about any gap you may find in the way.
This course covers the same material as 18.03 with more emphasis on …
This course covers the same material as 18.03 with more emphasis on theory. Topics include first order equations, separation, initial value problems, systems, linear equations, independence of solutions, undetermined coefficients, and singular points and periodic orbits for planar systems.
This course examines cyber dynamics and processes in international relations from different …
This course examines cyber dynamics and processes in international relations from different theoretical perspectives. It considers alternative theoretical and empirical frameworks consistent with characteristic features of cyberspace and emergent transformations at all levels of international interaction. Theories examined include realism and neorealism, institutionalism and liberalism, constructivism, and systems theory and lateral pressure. The course also highlights relevant features and proposes customized international relations theory for the cyber age. Students taking the graduate version are expected to pursue the subject in greater depth through reading and individual research.
The development of systems and network concepts for students can begin with …
The development of systems and network concepts for students can begin with this highly interactive inquiry into cell phone networks. Cell phones serve as a handy knowledge base on which to develop understanding. Each cell phone represents a node, and each phone’s address book represents an edge, or the calling relationships between cell phones. Students conceptualize the entire cell phone network by drawing a graphic that depicts each cell phone in the class as a circle (node) connected by directional lines (edges) to their classmate’s cell phones in their address book. Students are queried on the shortest pathway for calling and calling pathways when selected phones are knocked out using school and classroom scenarios.
Students then use a simulation followed by Cytoscape, visually graphing software, to model and interrogate the structure and properties of the class’s cell phone network. They investigate more advanced calling relationships and perturb the network (knock out cell towers) to reexamine the adjusted network’s properties. Advanced questions about roaming, cell towers and email focus on a deeper understanding of network behavior. Both the paper and software network exercises highlight numerous properties of networks and the activities of scientists with biological networks.
Target Audience: This is an introductory module that we recommend teaching before each of our other modules to give students a background in systems. This module can be applied easily to any content area and works best as written for students between 6th and 12th grades but can be adapted for other ages. The lessons work best when in-person with students. If you are looking for an Introduction to Systems for remote learning, please use our Systems are Everywhere module.
This course is an introduction to the consideration of technology as the …
This course is an introduction to the consideration of technology as the outcome of particular technical, historical, cultural, and political efforts, especially in the United States during the 19th and 20th centuries. Topics include industrialization of production and consumption, development of engineering professions, the emergence of management and its role in shaping technological forms, the technological construction of gender roles, and the relationship between humans and machines.
In this Cyberchase video segment, the CyberSquad must measure the length of …
In this Cyberchase video segment, the CyberSquad must measure the length of the rope that will lower Digit from the ceiling to remove the voice box from a statue of Hacker.
This course is the first of a two term sequence in modeling, …
This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.
This lesson will include the idea that the body is a system …
This lesson will include the idea that the body is a system of interacting subsystems composed of groups of cells focusing the role of neurons and the cells of which they are composed. The structure of neurons will be the focus.
Open Signals and Systems Laboratory Exercises is a collection of lab assignments …
Open Signals and Systems Laboratory Exercises is a collection of lab assignments that have been used in EE 224: Signals and Systems I in the Department of Electrical and Computer Engineering at Iowa State University. These lab exercises have been curated, edited, and presented in a consistent format to improve student learning.
Students will learn about the water cycle, watersheds, and point and non-point …
Students will learn about the water cycle, watersheds, and point and non-point source pollution. Students will then apply this knowledge to take a position in the debate about the proposed development at Hawn's Bridge Peninsula at Raystown Lake and write a letter to the editor expressing their opinion. Pairs well with an Engineering Design Challenge or a Meaningful Watershed Educational Experience (MWEE).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.