This course is offered during the Independent Activities Period (IAP), which is …
This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This survey course is intended to review memory and its impact on our lives. Memories make us who we are, and make us what we are going to become. The loss of memory in amnesia can cause us to lose ourselves. Memory provides a bridge between past and present. Through memory, past sensations, feelings, and ideas that have dropped from conscious awareness can be subsequently recovered to guide current thought and action. In this manner, memory allows us to locate our car in the parking lot at the end of the day or guides us to avoid retelling the same joke to the same friend. This seminar will focus on how memories are created and controlled such that we are able to remember the past. Recent insights from non-human electrophysiological and human brain imaging research will be emphasized.
This undergraduate course is designed to introduce students to cognitive processes. The …
This undergraduate course is designed to introduce students to cognitive processes. The broad range of topics covers each of the areas in the field of cognition, and presents the current thinking in this discipline. As an introduction to human information processing and learning, the topics include the nature of mental representation and processing, the architecture of memory, pattern recognition, attention, imagery and mental codes, concepts and prototypes, reasoning and problem solving.
This course will explore the state of the art in common sense …
This course will explore the state of the art in common sense knowledge, and class projects will design and build interfaces that can exploit this knowledge to make more usable and helpful interfaces. This year’s theme will be about how common sense knowledge differs in different languages and cultures, and how machine understanding of this knowledge can help increase communication between people, and between people and machines.
By the end of this course participants will…Understand how local phenomena interact …
By the end of this course participants will…Understand how local phenomena interact with the Next Generation Science Standards, climate change, ecosystems, and people in a community.Experience how local phenomena and field investigations can build scientific understanding.
This quick tour provides a brief introduction to EMBL-EBI's Complex Portal: a …
This quick tour provides a brief introduction to EMBL-EBI's Complex Portal: a manually curated, encyclopedic resource of macromolecular complexes from a number of key model organisms.
By the end of the course you will be able to: Outline the scope of the available data in Complex Portal Describe how to search for macromolecular complexes of interest List manual and computational methods for downloading Complex data Outline how to submit curation requests for Complexes Identify sources of more information about Complex Portal
This course covers the algorithmic and machine learning foundations of computational biology …
This course covers the algorithmic and machine learning foundations of computational biology combining theory with practice. We cover both foundational topics in computational biology, and current research frontiers. We study fundamental techniques, recent advances in the field, and work directly with current large-scale biological datasets.
This course is an introduction to computational theories of human cognition. Drawing …
This course is an introduction to computational theories of human cognition. Drawing on formal models from classic and contemporary artificial intelligence, students will explore fundamental issues in human knowledge representation, inductive learning and reasoning. What are the forms that our knowledge of the world takes? What are the inductive principles that allow us to acquire new knowledge from the interaction of prior knowledge with observed data? What kinds of data must be available to human learners, and what kinds of innate knowledge (if any) must they have?
An introduction to computational theories of human cognition. Emphasizes questions of inductive learning …
An introduction to computational theories of human cognition. Emphasizes questions of inductive learning and inference, and the representation of knowledge. Project required for graduate credit. This class is suitable for intermediate to advanced undergraduates or graduate students specializing in cognitive science, artificial intelligence, and related fields.
Why has it been easier to develop a vaccine to eliminate polio …
Why has it been easier to develop a vaccine to eliminate polio than to control influenza or AIDS? Has there been natural selection for a ’language gene’? Why are there no animals with wheels? When does ‘maximizing fitness’ lead to evolutionary extinction? How are sex and parasites related? Why don’t snakes eat grass? Why don’t we have eyes in the back of our heads? How does modern genomics illustrate and challenge the field? This course analyzes evolution from a computational, modeling, and engineering perspective. The course has extensive hands-on laboratory exercises in model-building and analyzing evolutionary data.
The course focuses on casting contemporary problems in systems biology and functional …
The course focuses on casting contemporary problems in systems biology and functional genomics in computational terms and providing appropriate tools and methods to solve them. Topics include genome structure and function, transcriptional regulation, and stem cell biology in particular; measurement technologies such as microarrays (expression, protein-DNA interactions, chromatin structure); statistical data analysis, predictive and causal inference, and experiment design. The emphasis is on coupling problem structures (biological questions) with appropriate computational approaches.
With the growing availability and lowering costs of genotyping and personal genome …
With the growing availability and lowering costs of genotyping and personal genome sequencing, the focus has shifted from the ability to obtain the sequence to the ability to make sense of the resulting information. This course is aimed at exploring the computational challenges associated with interpreting how sequence differences between individuals lead to phenotypic differences in gene expression, disease predisposition, or response to treatment.
This course covers the analytical, graphical, and numerical methods supporting the analysis …
This course covers the analytical, graphical, and numerical methods supporting the analysis and design of integrated biological systems. Topics include modularity and abstraction in biological systems, mathematical encoding of detailed physical problems, numerical methods for solving the dynamics of continuous and discrete chemical systems, statistics and probability in dynamic systems, applied local and global optimization, simple feedback and control analysis, statistics and probability in pattern recognition. An official course Web site and Wiki is maintained on OpenWetWare: 20.181 Computation for Biological Engineers.
This course introduces abstraction as an important mechanism for problem decomposition and …
This course introduces abstraction as an important mechanism for problem decomposition and solution formulation in the biomedical domain, and examines computer representation, storage, retrieval, and manipulation of biomedical data. As part of the course, we will briefly examine the effect of programming paradigm choice on problem-solving approaches, and introduce data structures and algorithms. We will also examine knowledge representation schemes for capturing biomedical domain complexity and principles of data modeling for efficient storage and retrieval. The final project involves building a medical information system that encompasses the different concepts taught in the course. Computer science basics covered in the first part of the course are integral to understanding topics covered in the latter part, and for completing the assigned homework.
Do you like teaching, but find yourself frustrated by how little students …
Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants’ ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small weekly discussion session for students currently enrolled in introductory biology classes. The instructor for this course, Dr. Julia Khodor, is a member of the HHMI Education Group.
Do you like teaching, but find yourself frustrated by how little students …
Do you like teaching, but find yourself frustrated by how little students seem to learn? Would you like to try teaching, but are nervous about whether you will be any good at it? Are you interested in new research on science education? Research in science education shows that the greatest obstacle to student learning is the failure to identify and confront the misconceptions with which the students enter the class or those that they acquire during their studies. This weekly seminar course focuses on developing the participants’ ability to uncover and confront student misconceptions and to foster student understanding and retention of key concepts. Participants read primary literature on science education, uncover basic concepts often overlooked when teaching biology, and lead a small weekly discussion session for students currently enrolled in introductory biology classes. The instructor for this course, Dr. Kosinski-Collins, is a member of the HHMI Education Group.
Concepts of Biology is designed for the introductory biology course for nonmajors …
Concepts of Biology is designed for the introductory biology course for nonmajors taught at most two- and four-year colleges. The scope, sequence, and level of the program are designed to match typical course syllabi in the market. Concepts of Biology includes interesting applications, features a rich art program, and conveys the major themes of biology.
Short Description: In this survey text, directed at those not majoring in …
Short Description: In this survey text, directed at those not majoring in biology, we dispel the assumption that a little learning is a dangerous thing. We hope that by skimming the surface of a very deep subject, biology, we may inspire you to drink more deeply and make more informed choices relating to your health, the environment, politics, and the greatest subject that are all of us are entwined in, life itself. This text also includes 80 interactive H5P activities that you can use to evaluate your understanding as you go.
Long Description: In this survey text, directed at those not majoring in biology, we dispel the assumption that a little learning is a dangerous thing. We hope that by skimming the surface of a very deep subject, biology, we may inspire you to drink more deeply and make more informed choices relating to your health, the environment, politics, and the greatest subject that are all of us are entwined in, life itself. This text also includes 80 interactive H5P activities that you can use to evaluate your understanding as you go.
In the adapted textbook, Concepts of Biology — 1st Canadian Edition, you will find the following units: Unit 1: The Cellular Foundation of Life Unit 2: Cell Division and Genetics Unit 3: Molecular Biology and Biotechnology Unit 4: Animal Structure and Function
Word Count: 274848
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
Short Description: In this survey text, directed at those not majoring in …
Short Description: In this survey text, directed at those not majoring in biology, we dispel the assumption that a little learning is a dangerous thing. We hope that by skimming the surface of a very deep subject, biology, we may inspire you to drink more deeply and make more informed choices relating to your health, the environment, politics, and the greatest subject that are all of us are entwined in, life itself. This text also includes 80 interactive H5P activities that you can use to evaluate your understanding as you go.
Long Description: In this survey text, directed at those not majoring in biology, we dispel the assumption that a little learning is a dangerous thing. We hope that by skimming the surface of a very deep subject, biology, we may inspire you to drink more deeply and make more informed choices relating to your health, the environment, politics, and the greatest subject that are all of us are entwined in, life itself. This text also includes 80 interactive H5P activities that you can use to evaluate your understanding as you go.
In the adapted textbook, Concepts of Biology — 1st Canadian Edition, you will find the following units: Unit 1: The Cellular Foundation of Life Unit 2: Cell Division and Genetics Unit 3: Molecular Biology and Biotechnology Unit 4: Animal Structure and Function
Word Count: 274896
ISBN: 978-1-989623-99-2
(Note: This resource's metadata has been created automatically by reformatting and/or combining the information that the author initially provided as part of a bulk import process.)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.