Updating search results...

Search Resources

221 Results

View
Selected filters:
  • genetics
The Geniverse Lab Demo
Read the Fine Print
Rating
0.0 stars

The Geniverse software is being developed as part of a five-year research project funded by the National Science Foundation. Still in its early stages, a Beta version of the software is currently being piloted in six schools throughout New England. We invite you to try the current Beta version, keeping in mind that you may encounter errors or pages that are not fully functional. If you encounter any problem, it may help to refresh or reload the web page.

Subject:
Genetics
Life Science
Material Type:
Activity/Lab
Data Set
Game
Interactive
Student Guide
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Genomic Medicine
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scenario, in order to set the stage and engage the student by showing: why is this important to know? how will the information presented be brought to bear on medical practice? The final section presents the ethical, legal, and social issues surrounding genomic medicine. A vision of how genomic medicine relates to preventative care and public health is presented in a discussion forum with the students where the following questions are explored: what is your level of preparedness now? what challenges must be met by the healthcare industry to get to where it needs to be?

Lecturers
Dr. Atul J. Butte
Dr. Steven A. Greenberg
Dr. Alvin Thong-Juak Kho
Dr. Peter Park
Dr. Marco F. Ramoni
Dr. Alberto A. Riva
Dr. Zoltan Szallasi
Dr. Jeffrey Mark Drazen
Dr. Todd Golub
Dr. Joel Hirschhorn
Dr. Greg Tucker-Kellogg
Dr. Scott Weiss

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Kohane, Isaac
Date Added:
02/01/2004
Genomics & Bioinformatics Dictionary
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This guide was created to provide definitions and resources for bioinformatics and genomics terms frequently seen in literature. Each term has been linked to it's original source for additional information and resources. This guide is intended for anyone who is interested in learning more about bioinformatics or genomics. Designed to provide concise yet easy to understand definitions, this allows users with any background level in genomics and bioinformatics to gain a better understanding of some commonly used terms and phrases.

Subject:
Applied Science
Computer Science
Genetics
Life Science
Material Type:
Reading
Provider:
University of Florida
Author:
Aida Miro-Herrans
Ashley Beard
Date Added:
08/18/2023
Gut microbes linked to metabolism in juvenile Atlantic salmon
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"One underexplored factor that affects the food industry is the gut microbiome of animals raised for consumption. Gut microbes play big roles in how animals break down food and absorb nutrients and thus how animals grow and develop. A new study explored the links between gut microbial communities, fish feed conversion, and fish genetics in the domestic Atlantic salmon. While researchers observed weak associations between host genetics and microbial composition, they did identify bacteria linked to carbon metabolism in fat tissue and feed efficiency, as well as weight gain. The findings highlight some of the roles played by gut microbes in the metabolism of Atlantic salmon, which could affect how the fish are raised for consumption..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
02/25/2021
Gut microbiome and feed efficiency of pigs
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Feed efficiency is an important economic and environmental parameter in raising swine. It captures how effectively livestock feed is turned into food products for humans. Increasing a pig’s feed efficiency can reduce a farm’s costs and energy use. A new study shows that one factor that could affect pigs’ feed efficiency is their gut microbiome. Feed intake and body weight measurements showed significant differences in feed efficiency among three pig breeds: Duroc, Landrace, and Large White, while genetic analyses of their gut microbiomes revealed differences in their microbial makeup. Association analyses between these datasets indicated a positive association between 4 types of bacteria and feed efficiency. This link could help both scientists and farmers understand how intestinal microbes influence animal traits crucial to production. such as those related to fatness. And it could offer a valuable new way to influence the feed efficiency of pigs..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/11/2020
Hardy-Weinberg equation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This equation relates allele frequencies to genotype frequencies for populations in Hardy-Weinberg equilibrium. Created by Sal Khan.

Subject:
Biology
Life Science
Material Type:
Lesson
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Sal Khan
Date Added:
06/23/2014
Heredity Mix n Match
Read the Fine Print
Educational Use
Rating
0.0 stars

Students randomly select jelly beans (or other candy) that represent genes for several human traits such as tongue-rolling ability and eye color. Then, working in pairs (preferably of mixed gender), students randomly choose new pairs of jelly beans from those corresponding to their own genotypes. The new pairs are placed on toothpicks to represent the chromosomes of the couple's offspring. Finally, students compare genotypes and phenotypes of parents and offspring for all the "couples" in the class. In particular, they look to see if there are cases where parents and offspring share the exact same genotype and/or phenotype, and consider how the results would differ if they repeated the simulation using more than four traits.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/26/2008
High School Genetics & Heredity Unit - Phenomena Found in Agriculture
Unrestricted Use
CC BY
Rating
0.0 stars

How can we Design Cattle to Better Meet Human Needs?

In this high school Storyline unit on genetics and heredity, students are introduced to ‘SuperCows’. As they explore the vast variety of cattle breeds, students discover that cattle are specialized for different purposes and while similar, the ‘SuperCows’ are clearly unique. Students wonder what caused this diversity and specificity which leads to investigations about the role of inheritance, DNA and proteins.

Subject:
Agriculture
Applied Science
Biology
Career and Technical Education
Environmental Science
Genetics
Life Science
Material Type:
Lesson Plan
Unit of Study
Date Added:
10/02/2020
Honey bee genetics shape the bee gut microbiota at the strain level
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"The honey bee gut microbiome has a critical influence on bee health and is transmitted among members of a colony through social interactions. The bee microbiome is made up of a core set of bacterial groups that show high diversity among individuals at the strain level. While this variation has been shown to be clearly associated with numerous environmental factors, bee genetics may also play an important role. Researchers recently used DNA sequencing techniques to better understand how bee genetics affect gut microbiome structure. The team examined the genomes of four subspecies of lab-reared honey bees with those of their associated microbiomes. They noted that the abundance of most core gut microbiota members was influenced by host subspecies and also found a clear link between a Bifidobacterium strain in the gut and brain neurotransmitter and gene expression patterns..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
03/01/2022
How DNA Binding Proteins Recognize Their Target Sequences in DNA
Unrestricted Use
CC BY
Rating
0.0 stars

Instructional video on how DNA binding proteins recognize their target sequences in DNA.

Although textbooks describe this process and show illustrations, it is difficult to grasp without seeing a live demonstration.

Created for Biology 41 General Genetics at Tufts University.

Subject:
Biology
Genetics
Life Science
Material Type:
Simulation
Author:
Ekaterina V. Mirkin
Date Added:
06/02/2021
Human Biology - Genetics (Student's Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Genetics Student Edition book is one of ten volumes making up the Human Biology curriculum, an interdisciplinary and inquiry-based approach to the study of life science.

Subject:
Biology
Genetics
Life Science
Material Type:
Activity/Lab
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Program in Human Biology, Stanford University
Date Added:
02/04/2011
Human Chromosome 2
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from NOVA: Judgment Day: Intelligent Design on Trial, learn how modern genetics and molecular biology offer compelling support for evolution. The video features an interview with biologist Ken Miller.

Subject:
Anthropology
Genetics
Life Science
Social Science
Material Type:
Lecture
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
Vulcan Productions, Inc.
WGBH Educational Foundation
Date Added:
11/01/2007
Human Genome Project
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The human genome project was one the most important human discoveries in the past 100 years. It creates a map of every gene in the human body.  Through this lesson you will explore the history of the genome project, its applications today, and implications for your life.  In addition, you will reflect on its impact on your life and determine if you think this is a positive or negative change. Based on your understanding, you will look at different perspectives with empathy to better understand how this technology impacts other people's lives.StandardsBIO.B.2.4Explain how genetic engineering has impacted the fields of medicine, forensics, and agriculture (e.g., selective breeding, gene splicing, cloning, genetically modified organisms, gene therapy).

Subject:
Biology
Life Science
Material Type:
Lesson Plan
Author:
Bonnie Waltz
Deanna Mayers
Tracy Rains
Date Added:
10/08/2017
The Human Genome Project - The Use of Genetic Screening Technology
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

This unit includes one week of lessons which immediately follow the Genetics and DNA units. The previous knowledge gained from these units, as well as a previous project where students researched and shared with their classmates a specific genetic disorder, will provide the background for students to participate in a debate about the ethical issues of applying information available through the Human Genome Project (HGP).

Subject:
Life Science
Material Type:
Reading
Unit of Study
Date Added:
09/27/2017
Human Prehistory 101: Epilogue
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Final video in a series from 23andMe and Khan Academy that introduces human prehistory, this video describes how when people started crossing oceans, genetic and cultural differences between people from different continents began fading.

Subject:
Genetics
Life Science
Material Type:
Lecture
Provider:
23andMe
Provider Set:
HumanPrehistory
Date Added:
10/15/2014
Imaging DNA Structure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the latest imaging methods used to visualize molecular structures and the method of electrophoresis that is used to identify and compare genetic code (DNA). Students should already have basic knowledge of genetics, DNA (DNA structure, nucleotide bases), proteins and enzymes. The lesson begins with a discussion to motivate the need for imaging techniques and DNA analysis, which prepares students to participate in the associated two-part activity: 1) students each choose an imaging method to research (from a provided list of molecular imaging methods), 2) they research basic information about electrophoresis.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mircea Ionescu
Myla Van Duyn
Date Added:
09/18/2014
Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects
Unrestricted Use
CC BY
Rating
0.0 stars

Limiting the debilitating consequences of ageing is a major medical challenge of our time. Robust pharmacological interventions that promote healthy ageing across diverse genetic backgrounds may engage conserved longevity pathways. Here we report results from the Caenorhabditis Intervention Testing Program in assessing longevity variation across 22 Caenorhabditis strains spanning 3 species, using multiple replicates collected across three independent laboratories. Reproducibility between test sites is high, whereas individual trial reproducibility is relatively low. Of ten pro-longevity chemicals tested, six significantly extend lifespan in at least one strain. Three reported dietary restriction mimetics are mainly effective across C. elegans strains, indicating species and strain-specific responses. In contrast, the amyloid dye ThioflavinT is both potent and robust across the strains. Our results highlight promising pharmacological leads and demonstrate the importance of assessing lifespans of discrete cohorts across repeat studies to capture biological variation in the search for reproducible ageing interventions.

Subject:
Biology
Life Science
Material Type:
Reading
Provider:
Nature Communications
Author:
Anna B. Crist
Anna C. Foulger
Anna L. Coleman-Hulbert
Brian Onken
Carolina Ibanez-Ventoso
Christina Chang
Christine A. Sedore
Daniel Edgar
Dipa Bhaumik
Elizabeth A. Chao
Erik Johnson
Esteban Chen
Girish Harinath
Gordon J. Lithgow
Jailynn Harke
Jason L Kish
Jian Xue
John H. Willis
June Hope
Kathleen J. Dumas
Manish Chamoli
Mark Lucanic
Mary Anne Royal
Max Guo
Michael P. Presley
Michelle K. Chen
Monica Driscoll
Patrick C. Phillips
Shaunak Kamat
Shobhna Patel
Suzanne Angeli
Suzhen Guo
Theo Garrett
W. Todd Plummer
Date Added:
08/07/2020
Interdisciplinary Integrated Unit on Dna and Genetics Part A: Science
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Part of an interdisciplinary week-long unit on DNA and genetics with activities in science, math, and language arts. This lesson is Part A: Science. Students complete a teacher-made scavenger hunt as an introduction to DNA and genetics, then watch a short video and use their science books to learn more about the topic. Students work in pairs to investigate DNA, genetics, and cloning through internet research and compile their information in the form of their own internet scavenger hunt.

Subject:
Biology
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
University of North Carolina at Chapel Hill School of Education
Provider Set:
LEARN NC Lesson Plans
Author:
Jane Lentz
Jimmy White
Marlene Smith
Tori Goldrick
Date Added:
10/12/2006