Updating search results...

Search Resources

97 Results

View
Selected filters:
  • brain
Complex Networks and Graphs
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about complex networks and how to represent them using graphs. They also learn that graph theory is a useful mathematical tool for studying complex networks in diverse applications of science and engineering, such as neural networks in the brain, biochemical reaction networks in cells, communication networks, such as the internet, and social networks. Topics covered include set theory, defining a graph, as well as defining the degree of a node and the degree distribution of a graph.

Subject:
Applied Science
Computing and Information
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Debbie Jenkinson
Garrett Jenkinson
John Goutsias
Susan Frennesson
Date Added:
09/18/2014
Control Using Sound
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain a deeper understanding of how sound sensors work through a hands-on design challenge involving LEGO MINDSTORMS(TM) NXT taskbots and sound sensors. Student groups each program a robot computer to use to the sound of hand claps to control the robot's movement. They learn programming skills and logic design in parallel. They experience how robots can take sensor input and use it to make decisions to move and turn, similar to the human sense of hearing. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Pranit Samarth
Satish S. Nair
Srijith Nair
Date Added:
09/18/2014
Conversations with History: Consciousness and the Biology of the Brain, with Christof Koch
Read the Fine Print
Rating
0.0 stars

Host Harry Kreisler welcomes neurobiologist Christof Koch for a discussion of what biology can tell us about consciousness. He discusses the framework for defining the problem which he developed with Nobel Laureate Francis Crick. He reflects on the ongoing revolution in our understanding of the brain and how technology is impacting the transformation of our neuronal correlates of consciousness. He also discusses the implications of his research for our understanding of manŐs place in the universe. (49 min)

Subject:
Arts and Humanities
Biology
Life Science
Material Type:
Lecture
Provider:
UCTV Teacher's Pet
Date Added:
07/04/2010
Defining an electrical biomarker of the epileptogenic zone
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Much research on epilepsy treatment has focused on properly identifying the epileptogenic zone, the area of the brain where a seizure initiates. This zone, previous studies have found, can potentially be recognized by high-frequency activity, or “fast activity,” that occurs in a brain area right after seizure onset. However, this method does not accurately delineate the epileptogenic zone from other normal brain tissues. A new paper published in Human Brain Mapping examines how a different marker, or “fingerprint,” can be used to accurately identify the epileptogenic zone, whether this fingerprint can be seen in different types of brainwaves, and, finally, how the method compares to using fast activity. The study builds on a previous paper published by the authors, in which the fingerprint itself was identified as a specific pattern of brain activity observed in seizure patients..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Anatomy/Physiology
Applied Science
Health, Medicine and Nursing
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
12/04/2019
Diabetes - A Global Challenge - Novel Approaches in Drug Development Part 2 (13:10)
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This presentation provides an overview of the existing treatment available for treatment of obesity. Genetic studies have revealed that the genes contributing to development of obesity is mainly located in the brain, therefore it would be logical to tro to target the brain when pursuing drugs for the treatment of obesity. However it’s not that simple.

Course responsible: Associate Professor Signe Sørensen Torekov, MD Nicolai Wewer Albrechtsen & Professor Jens Juul Holst

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Lecture
Provider:
University of Copenhagen Department of Biomedical Science
Provider Set:
Diabetes - A Global Challenge
Author:
Professor Birgitte Holst
Date Added:
01/07/2015
Discriminating between melatonin signaling at the cell surface and neuronal mitochondria
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"The physiological effects of melatonin are far reaching, from acting as an neuroprotective agent to regulating circadian rhythms and sleep cycles. An imbalance of this hormone has even been linked to neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s. The precise molecular mechanism by which melatonin exerts these effects, however, remains a mystery. To shed light on this process, a team of researchers has developed a melatonin-like compound that is unable to penetrate the cell membrane and binds only to cell-surface receptors. Melatonin’s physiological effects on the brain are controlled by the lock-and-key-like properties of this hormone and its receptors. When melatonin binds to its corresponding receptor, a biochemical signal is sent into the cell. But recent data suggests that this interaction may also occur inside the cell, itself. Specifically, on mitochondria within brain cells..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/20/2019
Disrupted global brain signal during unconsciousness
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"When someone loses consciousness, one of the main things that happens is a loss of integrated activity across functionally separate brain networks. But there isn’t a single way of measuring this that tracks with the degree of consciousness. That could soon change given the findings of a new article in the journal Anesthesiology. A group of international researchers examined functional magnetic resonance imaging, or fMRI, data and found support for the use of something called the “global brain signal”. The global signal is an average of all gray-matter brain activity across each voxel in a scan, and reflects global coordination at a given time. When there’s high coordination, voxels will all be mostly positive -- or negative -- and the sum will be positive or negative. In contrast, if there’s less coordination, the voxels across the brain won’t match and the values will cancel out..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/23/2020
Don't Bump into Me!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students' understanding of how robotic ultrasonic sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors. Student groups program their robots to move freely without bumping into obstacles (toy LEGO people). They practice and learn programming skills and logic design in parallel. They see how robots take input from ultrasonic sensors and use it to make decisions to move, resulting in behavior similar to the human sense of sight but through the use of sound sensors, more like echolocation. Students design-test-redesign-retest to achieve successful programs. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Earlier Parkinson’s dopaminergic treatment doesn’t improve long-term outcomes
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Parkinson's disease is a neurodegenerative disease that affects more than 10 million people across the globe. Despite improvements in treating the disease, doctors still have many unanswered questions, including when to start treatment. Now, researchers at the University of Rochester have taken another look at a past clinical trial to begin to answer that key question. Parkinson's occurs when neurons in a part of the brain called the substantia nigra die off. These neurons produce the neurotransmitter dopamine, and with the loss of those neurons, patients develop tremors, have difficulty moving, and show slow movement, among other symptoms. Restoring the dopamine with L-dopa or boosting levels with a dopamine agonist can help. Some studies have suggested that early dopaminergic treatment could protect neurons and slow disease progression. But that evidence isn't yet convincing, and the drugs might also cause uncontrolled, involuntary movements, leaving this an open question in the field..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
09/20/2019
Effects of Kefir on Behavior, Immunity, and the Gut Microbiome in Mice
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"We already know that eating good food makes our bodies feel good, but what we eat can also affect our brains. Microbiota that reside in our guts influence behavior through a mechanism called the microbiota-gut-brain axis. Certain foods – including prebiotic, probiotic, and fermented foods – have received attention for their mood-boosting benefits. Now, a new study adds another food to that list. Kefir, a fermented food produced from a combination of live bacteria and yeasts, is known to affect the gut microbiota, but whether it affects the microbiota-brain axis and behavior is unclear. Researchers fed mice two different types of kefir and examined their behavior and their gut microbes. They found that feeding kefir reduced stress-induced hormone signaling and reward-seeking and repetitive behaviors in the mice. Different kefirs affected different types of behaviors and changed the abundance of specific bacterial species in the gut..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
10/29/2020
Estrogen receptor fights inflammation in the brain
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Estrogen receptor α, or ERα, is believed to play a central role in controlling inflammation. Research suggests that ERα does that by regulating anti-inflammatory signaling in the microglia, the only immune cells that reside in the brain. Now, a new study confirms ERα’s beneficial role in the brains of mice. The work explored one mechanism believed to prime ERα to fight inflammation, the attachment of a phosphoryl group to a specific amino acid in ERα’s structure -- a process known as “phosphorylation”. To test that mechanism, researchers blocked the phosphorylation of ERα in microglia from mice. That absence, it turned out, compromised the cells’ defenses against inflammation – leaving mice vulnerable to negative effects. For example, some mice with blocked ERα phosphorylation were obese and showed weakened motor skills. Further study could help explain how phosphorylated ERα regulates brain immunity and inflammation in brain diseases..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/03/2020
Exercise for your Brain
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Not all exercise is the same, but all exercise can help you grow strong and keep you healthy. Exercise can also help you with your homework and that science project due at the end of the year.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Game
Lesson Plan
Provider:
Arizona State University School of Life Sciences
Provider Set:
Ask A Biologist
Author:
CJ Kazilek
Gabriel Shaibi
Date Added:
08/12/2009
Exosomes: Emerging therapeutics for ischemic stroke recovery
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Stroke is the second leading cause of death and the third leading cause of disability worldwide. Most strokes are classified as ischemic, meaning they involve blockage of blood supply. There are no effective treatments for ischemic stroke or its complications, but several types of cells naturally produce molecules that can help heal ischemic tissue. These molecules are packaged and released within sacs called exosomes that can deliver them to other cells, making exosomes promising targets for stroke therapy. For example, some exosomes can exert anti-inflammatory effects, promote blood vessel formation, and support the development of new neurons. Beneficial exosomes can also suppress cell death and regulate immune responses. Studies on rat and rabbit stroke models have supported the clinical potential of exosomes to promote healing after stroke and a few clinical trials in humans are currently underway..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
04/14/2023
Follow the Light
Read the Fine Print
Educational Use
Rating
0.0 stars

Students' understanding of how robotic light sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and light sensors. Working in pairs, students program LEGO robots to follow a flashlight as its light beam moves around. Students practice and learn programming skills and logic design in parallel. They see how robots take input from light sensors and use it to make decisions to move, similar to the human sense of sight. Students also see how they perform the steps of the engineering design process in the course of designing and testing to achieve a successful program. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Grey Matters: Building the Brain - From Simplicity to Complexity
Read the Fine Print
Rating
0.0 stars

What are the mechanisms by which neurons differentiate to achieve the spectacular complexity of the brain? Join UCSD's Nick Spitzer as he explains what we know about this process. (57 minutes)

Subject:
Anatomy/Physiology
Life Science
Material Type:
Lecture
Provider:
UCTV Teacher's Pet
Date Added:
03/17/2009
Grey Matters: How Do We Predict the Future - Brains, Rewards and Addiction
Read the Fine Print
Rating
0.0 stars

In this fascinating presentation, The Salk Institute's Terry Sejnowski explores how by its nature the human brain is susceptible to the effects of addictive substances. (59 minutes)

Subject:
Anatomy/Physiology
Life Science
Material Type:
Lecture
Provider:
UCTV Teacher's Pet
Date Added:
06/28/2009
Grey Matters: Stem Cells - The Brain's Beginnings
Read the Fine Print
Rating
0.0 stars

During the past decade, there have been dramatic advancements in the brain and cognitive sciences. For the first time, understanding how the brain works has become a scientifically achievable goal. In this new lecture series, Grey Matters: Molecules to Mind, San Diego's leading Neuroscientists explore the human brain. The first lecture in this series addresses an issue that has often been absent in these discussions: what role do stem cells play in development of the brain? (59 minutes)

Subject:
Anatomy/Physiology
Life Science
Material Type:
Lecture
Provider:
UCTV Teacher's Pet
Date Added:
01/20/2009
Hearing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Hearing is a familiar and important human sense that is a topic naturally of interest to those who are curious about human biology. This unit will enable you to relate what you read to your own sensory experiences - and indeed many of the questions asked have exactly that function. This unit will be best understood by those with some biological understanding.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Reading
Syllabus
Provider:
The Open University
Provider Set:
Open University OpenLearn
Date Added:
02/16/2011