Updating search results...

Search Resources

39 Results

View
Selected filters:
  • transcription
Freshman Seminar: Structural Basis of Genetic Material: Nucleic Acids
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the “Big Bang” of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Zhang, Shuguang
Date Added:
09/01/2005
The Future Of Natural History Transcription: Navigating AI Advancements with VoucherVision and the Specimen Label Transcription Project'
Only Sharing Permitted
CC BY-ND
Rating
0.0 stars

William Weaver, Brad Ruhfel, Kyle Lough, and Stephen Smith (University of Michigan) present 'The Future of Natural History Transcription: Navigating AI Advancements with VoucherVision and the Specimen Label Transcription Project' during the AI & Bibliographic Data session at the Fantastic Futures ai... This item belongs to: movies/fantastic-futures-annual-international-conference-2023-ai-for-libraries-archives-and-museums-02.

This item has files of the following types: Archive BitTorrent, Item Tile, MP3, MPEG4, Metadata, PNG, Thumbnail, h.264 720P, h.264 IA

Subject:
Applied Science
Computer Science
Information Science
Material Type:
Lecture
Provider:
AI4LAM
Provider Set:
Fantastic Futures 2023 Conference Session Recordings
Author:
Brad Ruhfel
Kyle Lough
Stephen Smith
William Weaver
Date Added:
04/30/2024
Gene Expression - The Basics
Unrestricted Use
CC BY
Rating
0.0 stars

Express yourself through your genes! See if you can generate and collect three types of protein, then move on to explore the factors that affect protein synthesis in a cell.

Subject:
Genetics
Life Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
George Emanuel
John Blanco
Kathy Perkins
Mike Klymkowsky
Tom Perkins
Date Added:
08/20/2012
Genetics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Fink, Gerald
Kaiser, Chris
Mischke, Michelle
Samson, Leona
Date Added:
09/01/2004
Identifying calcium signaling mechanisms in a human fungal pathogen
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Calcium signaling is critical to cellular processes in a wide variety of cells, making it important for human health and disease Now, researchers have uncovered one of the mechanisms underlying this process in a pathogenic fungus Candida albicans is one of the most important human yeast pathogens, causing illness in immunocompromised patients In yeasts and lower eukaryotes, calcium signaling is tightly regulated by the transcription factor Crz1, which travels to the nucleus following calcium stress C..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
02/14/2020
Introduction to Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.
Acknowledgments
The study materials, problem sets, and quiz materials used during Fall 2004 for 7.012 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course #7.012. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chess, Andrew
Gardel, Claudette
Lander, Eric
Weinberg, Robert
Date Added:
09/01/2004
Introduction to Genetic Engineering and Its Applications
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers apply their understanding of DNA to manipulate specific genes to produce desired traits, and how engineers have used this practice to address current problems facing humanity. They learn what genetic engineering means and examples of its applications, as well as moral and ethical problems related to its implementation. Students fill out a flow chart to list the methods to modify genes to create GMOs and example applications of bacteria, plant and animal GMOs.

Subject:
Applied Science
Engineering
Genetics
Life Science
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kimberly Anderson
Matthew Zelisko
Date Added:
09/18/2014
Introductory Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. The focus of 7.013 is on genomic approaches to human biology, including neuroscience, development, immunology, tissue repair and stem cells, tissue engineering, and infectious and inherited diseases, including cancer.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Amon, Angelika
Ray, Diviya
Sive, Hazel
Date Added:
02/01/2018
Introductory Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health and disease.
Acknowledgements
The study materials, problem sets, and quiz materials used during Spring 2005 for 7.014 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course 7.014. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Chisholm, Penny
Khodor, Julia
Mischke, Michelle
Walker, Graham
Date Added:
02/01/2005
Introductory Biology
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.
Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Jacks, Tyler
Sinha, Diviya
Sive, Hazel
Date Added:
02/01/2013
PIWI-interacting RNAs are promising biomarkers for targeting glioma and other cancers
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Glioma is the most common primary brain tumor and represents a major health problem across the globe. Understanding how gliomas form has proven difficult, especially at the molecular level, but growing evidence points to the important roles played by non-coding RNAs, especially small non-coding RNAs that interact with PIWI proteins, or piRNAs. piRNAs execute functions associated with epigenetic reprogramming and can regulate transcription, translation, development, and mRNA stability. In fact, piRNAs have been detected in many types of cancer and are known to be involved in the development and spread of certain tumors. piRNAs are formed either through the “primary processing pathway” or the secondary “ping-pong cycle” pathway. In conjunction with PIWI proteins, piRNAs execute epigenetic regulation of genes by modifying histones. In this way, piRNAs can influence numerous molecular signaling pathways associated with the formation and spread of gliomas, including the PI3K/AKT and TNF signaling pathways..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/12/2020
Phonetics Workbook for Students of Communication Sciences and Disorder
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This workbook is designed to give students in communication sciences and disorders foundational knowledge in Phonetics. Students will learn to listen and transcribe the speech of typically developing speakers of Standard American English in the International Phonetic Alphabet (IPA). Students will also learn how to listen and transcribe the speech of individuals with common speech sound disorders (i.e., residual articulation disorders and phonological disorders). Students will also be introduced to the fundamentals of speech science and spectrograms as they pertain to speech sound production. Written by April M. Yorke, PhD, CCC-SLP with her students Alyssa Mahler, Carley Shermak, and Emily Sternad.

Subject:
Anatomy/Physiology
Applied Science
Health, Medicine and Nursing
Life Science
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Cleveland State University
Author:
April M Yorke
Date Added:
08/24/2020
Portuguese Communication Exercises
Unrestricted Use
CC BY
Rating
0.0 stars

A compilation of nearly 350 brief video clips, together with a complete Portuguese transcription and English translation of native speakers of Portuguese from various locations throughout Brazil (and some Portugal) who talk about 80 different topics.

Subject:
Arts and Humanities
Languages
Material Type:
Lesson
Provider:
University of Texas at Austin
Provider Set:
COERLL
Author:
Orlando Kelm
Date Added:
01/17/2017
A Recipe for Protein Production.docx
Unrestricted Use
CC BY
Rating
0.0 stars

The activity is designed to teach the protein production steps by putting the students into the processes by becoming DNA triplets, RNA codons, and transfer RNA.

Subject:
Life Science
Material Type:
Activity/Lab
Author:
Janet Bouknight Bargar
Date Added:
06/26/2018
TRF2 binds to promoter G-quadruplexes genome-wide
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"TRF2 is a protein in charge of protecting the endcaps of chromosomes known as telomeres. But increasing evidence suggests that TRF2 also carries out important non-telomere-related functions, including DNA repair and transcription regulation. To better understand these functions, researchers recently mapped out where else TRF2 sites might exist. ChIP-Seq assays of fibrosarcoma cells revealed extra-telomeric TRF2 sites throughout the genome, which were highly enriched in DNA sequences with the potential to form G-quadruplexes, a DNA structure formed by G-rich sequences with a specific pattern, known to play a critical role in gene expression. TRF2 bound tightly to these sites, and further experiments revealed that TRF2 occupancy resulted in altered mRNA expression in nine target genes. Because naturally occurring intracellular G-quadruplexes are difficult to detect, TRF2 binding may serve as a new tool to specifically detect these regions..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Applied Science
Biology
Chemistry
Health, Medicine and Nursing
Life Science
Physical Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/12/2020
Transcription: How mRNA Helped Save Lives: Crash Course Biology #34
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

You’ve probably heard of mRNA, thanks to the COVID-19 vaccine. But what is mRNA exactly? In this episode of Crash Course Biology, we learn about the role of messenger RNA in living things and how it decodes our DNA instruction manual through transcription.
Chapters:
Introduction: mRNA Vaccines
Messenger RNA
Transcription
Processing & Splicing
The Central Dogma
Alternative Splicing
Review & Credits
Credits

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
Complexly
Provider Set:
Crash Course Biology
Date Added:
04/03/2024
Transliteration and Transcription Technology
Read the Fine Print
Educational Use
Rating
0.0 stars

This article is a brief overview of linguistic issues relating to transliteration and transcription procedures. The document discusses differences between transliteration and transcription as well as areas of technology application for the two. A document that shows unicode font codes for each letter of the Arabic alphabet and five different transliteration schemes is also available for free download.

Subject:
Arts and Humanities
Languages
Linguistics
Social Science
Material Type:
Reading
Provider:
The CJK Dictionary Institute
Date Added:
10/14/2013
UCLA Phonetics Lab Archive
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The UCLA Phonetics Lab Archive includes samples taken from Egyptian, Iraqi, Najdi, North and South Levantine, and Tunisian dialects. The Arabic recordings consist almost exclusively of word lists read aloud to illustrate small differences in the pronunciation of the words. The Phonetics Laboratory includes recordings of hundreds of languages and provides them for free as source materials for phonetic and phonological research. Phonetic transcriptions are included alongside the recordings as are translations and scans of original field notes where relevant.

Subject:
Arts and Humanities
Languages
Linguistics
Social Science
Material Type:
Reading
Date Added:
10/14/2013
Unraveling the mysteries of calcineurin
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"Calcineurin is a serine/threonine phosphatase that serves as a critical bridge between calcium signaling and the phosphorylation states of numerous important substrates. But despite being studied for approximately 40 years, exactly how calcineurin is activated in humans and other organisms is not yet fully understood. Structurally, calcineurin is a heterodimer expressed as three different isoforms: α, β, and γ each featuring a catalytic domain, a B chain binding helix, the regulatory domain, an autoinhibitory domain, and an unstructured C-terminal domain of unknown function. Disorder is a key hallmark of calcineurin’s structure. The intrinsically disordered regulatory domain could facilitate the rapid activation of calcineurin during calcium signaling. Increasing evidence suggests that calcineurin is a vital component of various signaling pathways. But even more work is needed to understand calcineurin’s versatility including how certain substrates bind to calcineurin..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
11/12/2020