Updating search results...

Search Resources

10000 Results

View
Selected filters:
Quantum Information Science I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is a three-course series that provides an introduction to the theory and practice of quantum computation. The three-course series comprises:
8.370.1x: Foundations of Quantum and Classical computing—quantum mechanics, reversible computation, and quantum measurement
8.370.2x: Simple Quantum Protocols and Algorithms—teleportation and superdense coding, the Deutsch-Jozsa and Simon’s algorithm, Grover’s quantum search algorithm, and Shor’s quantum factoring algorithm
8.370.3x: Foundations of Quantum communication—noise and quantum channels, and quantum key distribution
Prior knowledge of quantum mechanics is helpful but not required. It is best if you know some linear algebra.
This course was organized as a three-part series on MITx by MIT’s Department of Physics and is now archived on the Open Learning Library, which is free to use. You have the option to sign up and enroll in each module if you want to track your progress, or you can view and use all the materials without enrolling.

Subject:
Applied Science
Computer Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Chuang, Isaac
Shor, Peter
Date Added:
02/01/2018
Phase separation propensity of retinoid X receptor RXRβ
Unrestricted Use
CC BY
Rating
0.0 stars

This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:

"RXRβ is one of three types of retinoid X receptors, which play important roles in how cells grow, differentiate, and die and might be targets for the treatment of conditions such as insulin resistance, autoimmunity, and neurodegeneration. A recent study into the physical behavior of RXRβ could bring researchers closer to that possibility. A combination of lab experiments and computer modeling revealed the unique properties of the receptor’s AB region. This region, common to this family of receptors, enables the activation of target genes. But in RXRβ, researchers found, the AB region also supports liquid-liquid phase separation a biochemical phenomenon that is fundamental to the compartmentalization of the cell. As a driver of RXRβ’s physical behavior, this capacity for phase separation could also influence the receptor’s transcriptional behavior. Understanding how could give researchers a better idea of RXRβ’s role in disease and how it might be modulated to promote human health..."

The rest of the transcript, along with a link to the research itself, is available on the resource itself.

Subject:
Biology
Life Science
Material Type:
Diagram/Illustration
Reading
Provider:
Research Square
Provider Set:
Video Bytes
Date Added:
05/08/2023
Wyoming Student Atlas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Wyoming Student Atlas helps Wyoming's students learn about the human, physical, cultural, and historical geography of their state, while increasing critical thinking skills and spatial awareness. The Wyoming Student Atlas was produced by the Wyoming Geographic Information Science Center (WyGISC) in partnership with the Wyoming Geographic Alliance. The Wyoming Student Atlas is available as a soft cover book, as a digital flipbook, and as a series of science or social studies Web-based interactive story maps which can be used in lesson plans either as self-guided or instructor-guided activities.

Most activities are aligned with Wyoming Social Studies standards (2018) or Wyoming Science Standards (2016).

Subject:
Agriculture
Applied Science
Career and Technical Education
Environmental Science
History
Life Science
Physical Science
Social Science
Material Type:
Interactive
Lesson
Lesson Plan
Author:
Wyoming Geographic Alliance
Wyoming Geographic Information Science Center
Date Added:
01/13/2020
Get Close to a Nuclear Fission Reaction!
Read the Fine Print
Educational Use
Rating
0.0 stars

Learn how scientists regulate a nuclear reactor in this animation-enhanced essay from the FRONTLINE Web site.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/29/2004
Let’s Take a Spin: One-Axis Rotation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about one-axis rotations, and specifically how to rotate objects both physically and mentally to understand the concept. They practice drawing one-axis rotations through a group exercise using cube blocks to create shapes and then drawing those shapes from various x-, y- and z-axis rotation perspectives on triangle-dot paper (isometric paper). They learn the right-hand rule to explore rotations of objects. A worksheet is provided. This activity is part of a multi-activity series towards improving spatial visualization skills.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Emily Breidt
Jacob Segil
Date Added:
02/07/2017
Geometric Disciplines and Architecture Skills: Reciprocal Methodologies
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an intensive introduction to architectural design tools and process, and is taught through a series of short exercises. The conceptual basis of each exercise is in the interrogation of the geometric principles that lie at the core of each skill. Skills covered in this course range from techniques of hand drafting, to generation of 3D computer models, physical model-building, sketching, and diagramming. Weekly lectures and pin-ups address the conventions associated with modes of architectural representation and their capacity to convey ideas. This course is tailored and offered only to first-year M.Arch students.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Clifford, Brandon
Date Added:
09/01/2012
Mechanics and Materials II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Anand, Lallit
Parks, David
Date Added:
02/01/2004
Introduction to Mathematical Modeling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This introduction to mathematical modeling was developed for an audience of college seniors pursuing an undergraduate degree in mathematics with emphasis in applied mathematics, the life sciences, or engineering. The course builds on knowledge of calculus, linear algebra, and differential equations to address the basic techniques and thought processes that are fundamental to mathematical modeling. The style is deliberately casual and the main goal is to explain how mathematics learned in core undergraduate classes may be used to understand simple phenomena that arise in physics and biology, and how the corresponding models are put together, tested, and analyzed.

Subject:
Mathematics
Material Type:
Textbook
Provider:
University of Arizona
Author:
Joceline Lega
Date Added:
08/28/2024
Classifying Animals by Appearance Versus DNA Sequence
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The topic of this video module is how to classify animals based on how closely related they are. The main learning objective is that students will learn how to make phylogenetic trees based on both physical characteristics and on DNA sequence. Students will also learn why the objective and quantitative nature of DNA sequencing is preferable when it come to classifying animals based on how closely related they are. Knowledge prerequisites to this lesson include that students have some understanding of what DNA is and that they have a familiarity with the base-pairing rules and with writing a DNA sequence.

Subject:
Biology
Genetics
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Megan E. Rokop
Date Added:
06/11/2012
Skillbuilder 5: ID Using a Dichotomous Key (Grades 2-5)
Unrestricted Use
CC BY
Rating
0.0 stars

Students make observations of animals and use a dichotomous key, a common field identification tool, to classify and identify animals based on physical characteristics. Students then design their own dichotomous keys for various objects.

Educators Guide for this unit:
http://education.eol.org/lesson_plans/2-5_ScienceSkills_BioblitzSkillbuilderOverview.pdf

Lessons in this unit:
Biodiversity Skillbuilder 1: Meet a Creature
Biodiversity Skillbuilder 2: ID That Bird!
Biodiversity Skillbuilder 3: How Diverse is Biodiversity?
Biodiversity Skillbuilder 4: Modeling Classification
Biodiversity Skillbuilder 5: ID Using a Dichotomous Key

Subject:
Life Science
Material Type:
Activity/Lab
Author:
Encyclopedia of Life
Date Added:
11/22/2017
Introduction to Modeling and Simulation
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject provides an introduction to modeling and simulation, covering continuum methods, atomistic and molecular simulation, and quantum mechanics. Hands-on training is provided in the fundamentals and applications of these methods to key engineering problems. The lectures provide exposure to areas of application based on the scientific exploitation of the power of computation. We use web based applets for simulations, thus extensive programming skills are not required.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Buehler, Markus
Grossman, Jeffrey
Date Added:
02/01/2012
Virtual Marine Sediment Core Collection
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A primary objective of marine science classes is to learn the location and formation of ocean sediment types. Nearly 50 years of scientific ocean drilling has produced a tremendous scientific collection of cores from the global ocean floor. In addition, there are large online databases and related publications that have a wealth of associated information to supplement physical cores. Here we created a virtual marine core collection that provides exemplars of the primary ocean sediment lithologies, along with links to expedition reports and datasets, and tips for making requests for real core samples to use in education.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Chemistry
Geology
Life Science
Oceanography
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Kristen St. John
Date Added:
05/11/2022
Density of Rocks - How large is a ton of rock?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This module addresses the problem of how to determine the size of a ton of rocks of a given composition and invites the student to figure out how to solve the problem.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Geoscience
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Len Vacher
Date Added:
09/05/2019
How Is a Radio Wave Emitted?
Read the Fine Print
Educational Use
Rating
0.0 stars

This illustrated essay from A Science Odyssey Web site explains the science behind radio waves, including the role of electrons and electromagnetic fields.

Subject:
Applied Science
Chemistry
Computer Science
Computing and Information
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Interactive
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/29/2004
Metric Conversion at a Glance
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Metric Conversion at a Glance is an easy way to teach students how to convert one metric measurement into another without the use of fractions. It works for one, two and three dimensions length, area and volume.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Diane Nead
Date Added:
08/10/2012
Topographic Maps: Integrated Florida River project
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lab has two purposes. First, it introduces students to topographic maps (including latitude/longitude, map scales, contour intervals, and relief). Second, it introduces students to a river system that they will be studying throughout the semester, and begins preparing students to collect and analyze data from the field. The topographic maps are used to look at topographic characteristics of the river, such as its gradient and its longitudinal profile.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Kim Hannula
Date Added:
08/08/2019
Principles of Rock Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The principles of rock mechancis explains the fundamental concepts of continuum mechanics and rheology as applied in studies of rock deformation. A thorough understanding of rock behavior is essential for strategic planning in the petroleum and mining industry, in construction operation, and in locating subsurface repositories. The formation of geological structures or rock deformation patterns, studied by geodynamicists and tectonicians, is, also governed by the mechanical principles outlined in this textbook. The aim of the present book is obvious: to inspire a new generation of positively forward-thinking geoscientists and engineers, skillful in and favorable to the practical application of mechanics to rock structures.

Subject:
Geology
Physical Science
Material Type:
Reading
Textbook
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
R. Weijermars
Date Added:
02/08/2016
Designing Electric Circuits: Door Alarm
Read the Fine Print
Educational Use
Rating
0.0 stars

In this video segment adapted from ZOOM, cast members design and build door alarms using a variety of materials, including aluminum foil, batteries, and buzzers.

Subject:
Applied Science
Chemistry
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
01/22/2004
Dynamics of the Atmosphere
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus’ atmosphere, the generation of atmospheric turbulence, and stationary waves among other problems. The quasi-geostrophic approximation is derived, and the resulting equations are used to examine the hydrodynamic stability of the circulation with applications ranging from convective adjustment to climate.

Subject:
Applied Science
Atmospheric Science
Engineering
Oceanography
Physical Science
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Lindzen, Richard
Date Added:
02/01/2008