Students are presented with examples of the types of problems that environmental …
Students are presented with examples of the types of problems that environmental engineers solve, specifically focusing on water quality issues. Topics include the importance of clean water, the scarcity of fresh water, tap water contamination sources, and ways environmental engineers treat contaminated water.
The University of Iowa Center for Global and Regional Environmental Research and …
The University of Iowa Center for Global and Regional Environmental Research and College of Education teamed up to develop free eighth grade science curricula on land use and climate science, in response to Iowa’s grade level alignment of the middle school Next Generation Science Standards.
Primary author Dr. Ted Neal, clinical associate professor of science education, led a team of graduate and pre-service teaching students and CGRER scientists to develop the material. They grouped standards, resources and lesson material into six bundles, each designed to engage Iowa’s middle schoolers with local data and information on relevant topics like athletic concussions and agriculture.
These lessons are built on NGSS principles and put learning in the students’ hands with hands-on activities for groups and individuals. Kids will have ample opportunity to get curious, generate questions and lead themselves to answers.
The goal of this activity is to understand how techniques of persuasion …
The goal of this activity is to understand how techniques of persuasion (including background, supporting evidence, storytelling and the call to action) are used to develop an argument for or against a topic. Students develop an environmental case study for presentation and understand how a case study is used as an analysis tool.
During this course, participants will learn how to center investigations of local …
During this course, participants will learn how to center investigations of local scientific phenomena in a Next Generation Science Standards storyline. Course educators will offer instructional strategies and climate and community data to help teachers connect to the interests and identities of students and support understanding of the impacts of climate change. In collaboration with fellow teachers, participants will imagine possibilities for this kind of teaching and learning in their own classrooms through brainstorming possible phenomenon-based storylines local to their own students.
Students identify types and sources of indoor air pollutants in their school …
Students identify types and sources of indoor air pollutants in their school and home environments. They evaluate actions that can be taken to reduce and prevent poor indoor air quality. In an associated literacy activity, students develop a persuasive peer-to-peer case against smoking with the goal to understand how language usage can influence perception, attitudes and behavior.
Through multi-trial experiments, students are able to see and measure something that …
Through multi-trial experiments, students are able to see and measure something that is otherwise invisible to them seeing plants breathe. Student groups are given two small plants of native species and materials to enclose them after watering with colored water. After being enclosed for 5, 10 and 15 minutes, teams collect and measure the condensed water from the plants' "breathing," and then calculate the rates at which the plants breathe. A plant's breath is known as transpiration, which is the flow of water from the ground where it is taken up by roots (plant uptake) and then lost through the leaves. Students plot volume/time data for three different native plant species, determine and compare their transpiration rates to see which had the highest reaction rate and consider how a plant's unique characteristics (leaf surface area, transpiration rate) might figure into engineers' designs for neighborhood stormwater management plans.
Students observe and discuss a vacuum cleaner model of a baghouse to …
Students observe and discuss a vacuum cleaner model of a baghouse to better understand how this pollutant recovery method functions in cleaning industrial air pollution.
Students are introduced to the correct technical vocabulary for lighting, which is …
Students are introduced to the correct technical vocabulary for lighting, which is different than layperson's terms. They learn about lamp (light bulb) technology and how to identify the various types of lighting in their spaces. They are also introduced to lighting controls as a means for saving energy- reducing costs, human energy consumption, and greenhouse gas emissions on the environment. Using an accompanying worksheet, students embark on a guided audit in which they survey the lighting in their classroom and identify the potential savings from using controls.
Students use everyday building materials sand, pea gravel, cement and water to …
Students use everyday building materials sand, pea gravel, cement and water to create and test pervious pavement. They learn what materials make up a traditional, impervious concrete mix and how pervious pavement mixes differ. Groups are challenged to create their own pervious pavement mixes, experimenting with material ratios to evaluate how infiltration rates change with different mix combinations.
Students observe and discuss a cup and pencil model of a cyclone …
Students observe and discuss a cup and pencil model of a cyclone to better understand the science behind how this pollutant recovery method functions in cleaning industrial air pollution.
This lesson will introduce students to plastics and microplastics, allowing them to …
This lesson will introduce students to plastics and microplastics, allowing them to identify various categories of microplastics and how they can reduce the amount of plastic that is used. Students will learn how the consumption of plastics impacts the environment.
This task, by ClimeTime educators, is targeted to students in grades 6–8 …
This task, by ClimeTime educators, is targeted to students in grades 6–8 studying ecology and human impacts on the environment. Students identify relationships between human activity and environmental impacts on water resources. Educators can leverage students’ ideas to assess understandings of criteria in evaluating solutions. Resources include a student task document, teacher guide, and task facilitation slides.
As part of our continued commitment to education, the team at The …
As part of our continued commitment to education, the team at The Bee Cause Project has created this companion document, Educator’s Curriculum Guide, to supplement the Nature’s Partners curriculum.Our Tips from the Hive are designed to add layers of concept extensions, optional digital methods of delivering content, and support to educators that are either brand new or experienced environmental educators. The Buzz Worthy Resource Materials are video links, notable articles, and more printable resources, while the Bee Cause Book Club highlights recommended readings for students of all ages. Several titles have quality read-aloud links as well.
This hands-on experiment will provide students with an understanding of the issues …
This hands-on experiment will provide students with an understanding of the issues that surround environmental cleanup. Students will create their own oil spill, try different methods for cleaning it up, and then discuss the merits of each method in terms of effectiveness (cleanliness) and cost. They will be asked to put themselves in the place of both an environmental engineer and an oil company owner who are responsible for the clean-up.
Students learn about oil spills and their environmental and economic effects. They …
Students learn about oil spills and their environmental and economic effects. They experience the steps of the engineering design process as they brainstorm potential methods for oil spill clean-up, and then design, build, and re-design oil booms to prevent the spread of oil spills. During a reflective session after cleaning up their oil booms, students come up with ideas on how to reduce oil consumption to prevent future oil spills.
Wildfires are a contributing factor to greenhouse gas emissions. Scientists estimate that …
Wildfires are a contributing factor to greenhouse gas emissions. Scientists estimate that wildfires emitted 8 billion tons of CO2 per year for the past 20 years. Wildfires have risks and benefits that humans are impacted by. In this storyline, students will learn about the risks and benefits of wildfires, the science behind how fire occurs and the conditions that make a fire catastrophic. Students will evaluate local/regional fires to determine how human activities contribute to wildfires. Students will research how forest management decisions are made to decrease the negative impacts of wildfires and to decrease the amount of CO2 that is emitted from those fires.
Food waste is a major contributor to greenhouse gas. Wasted food and …
Food waste is a major contributor to greenhouse gas. Wasted food and the resources to produce that food are responsible for approximately 8% of global greenhouse gas emissions. In this storyline, students learn about the resources required to produce food through following the carbon cycle and discover how food waste contributes to climate change. They will also learn the farm to table transport chain as well as how to conduct a food waste audit. Finally, the students will research solutions to the problem of food waste that can be applicable to their own lives, their school, and their community.
Students explore the phenomena of how a tree gets its mass. They …
Students explore the phenomena of how a tree gets its mass. They are encouraged to think back to what they know about photosynthesis and explain what they know and what they wonder about the phenomena of a seed transforming into a large tree and having mass. Specifically, carbon is taken in from the atmosphere in the form of CO2 and transformed into glucose to provide energy and ultimately building material (cellulose). In this storyline, carbon sequestration refers to the removal of carbon (in the form of carbon dioxide) from the atmosphere through the process of photosynthesis. Carbon storage refers to the amount of carbon bound up in woody material above and below ground. Carbon sequestration occurs in trees, other plants, the ocean, and soil. Not all plants sequester the same amount of carbon, for example, there’s a difference in the amount of carbon sequestered between young and old trees, and between different species of trees. This has implications for working forests and old growth forests. Using information from this storyline, students will draw conclusions about the value of managing forests to benefit human needs and natural needs.
Los estudiantes exploran el fenómeno de cómo un árbol obtiene su masa. …
Los estudiantes exploran el fenómeno de cómo un árbol obtiene su masa. Se les anima a pensar en lo que saben sobre la fotosíntesis y explicar lo que saben y lo que se preguntan sobre el fenómeno de una semilla que se transforma en un árbol grande y tiene masa. Específicamente, el carbono se absorbe de la atmósfera en forma de CO2 y se transforma en glucosa para proporcionar energía y, en última instancia, material de construcción (celulosa). En este caso, la captura de carbono se refiere a la eliminación de carbono (en la forma de dióxido de carbono) de la atmósfera a través del proceso de fotosíntesis. El almacenamiento de carbono se refiere a la cantidad de carbono unido al material leñoso por encima y por debajo del suelo.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.