Software Carpentry lesson that teaches how to use databases and SQL In …
Software Carpentry lesson that teaches how to use databases and SQL In the late 1920s and early 1930s, William Dyer, Frank Pabodie, and Valentina Roerich led expeditions to the Pole of Inaccessibility in the South Pacific, and then onward to Antarctica. Two years ago, their expeditions were found in a storage locker at Miskatonic University. We have scanned and OCR the data they contain, and we now want to store that information in a way that will make search and analysis easy. Three common options for storage are text files, spreadsheets, and databases. Text files are easiest to create, and work well with version control, but then we would have to build search and analysis tools ourselves. Spreadsheets are good for doing simple analyses, but they don’t handle large or complex data sets well. Databases, however, include powerful tools for search and analysis, and can handle large, complex data sets. These lessons will show how to use a database to explore the expeditions’ data.
This open textbook was the result of a remix of pre-existing open …
This open textbook was the result of a remix of pre-existing open materials collected and reviewed by Molly Zhou and David Brown. Learning theories covered include the theories of Piaget, Bandura, Vygotsky, Kohlberg, Dewey, Bronfenbrenner, Eriksen, Gardner, Bloom, and Maslow.
This is a collection of resources to complement ENGL128 Essentials of Communication, …
This is a collection of resources to complement ENGL128 Essentials of Communication, an introduction to the fundamentals of effective speaking and writing, exploring a variety of contexts in which language is used.
This book is the result of a co-design project in a class …
This book is the result of a co-design project in a class in the Masters of Education program at the University of Calgary. The course, and the resulting book, focus primarily on the safe and ethical use of technology in digital learning environments. The course was organized according to four topics based on Farrow’s (2016) Framework for the Ethics of Open Education.
This document is intended to provide practical guidelines for researchers to follow …
This document is intended to provide practical guidelines for researchers to follow when examining their data for missingness and making decisions about how to handle that missingness. We primarily offer recommendations for multiple imputation, but also indicate where the same decisional guidelines are appropriate for other types of missing data procedures such as full information maximum likelihood (FIML). Streamlining procedures to address missing data and increasing the transparency of those procedures through consensus on reporting standards is inexorably linked to the goals of open scholarship (i.e., the endeavour to improve openness, integrity, social justice, diversity, equity, inclusivity and accessibility in all areas of scholarly activities, and by extension, academic fields beyond the sciences and academic activities; Pownall et al., 2021). Successfully implementing transparent and accessible guidelines for addressing missing data is also important for Diversity, Equity, Inclusion, and Accessibility (DEIA) improvement efforts (Randall et al., 2021). Structural barriers to participation in research can lead to participants from minoritized groups disproportionately dropping out of longitudinal, developmental studies or not completing measures (Randall et al., 2021). This selection effect can bias model estimates and confidence intervals, leading to unsubstantiated claims about equitable outcomes. In addition to often creating artificially small estimates of inequalities between groups, listwise deletion also limits statistical power for minoritized groups who are already underrepresented in many datasets.
This lesson is part of Software Carpentry workshops and teach an introduction …
This lesson is part of Software Carpentry workshops and teach an introduction to plotting and programming using python. This lesson is an introduction to programming in Python for people with little or no previous programming experience. It uses plotting as its motivating example, and is designed to be used in both Data Carpentry and Software Carpentry workshops. This lesson references JupyterLab, but can be taught using a regular Python interpreter as well. Please note that this lesson uses Python 3 rather than Python 2.
Preregistration is the process of specifying project details, such as hypotheses, data …
Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.
For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).
This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.
Preregistration is the process of specifying project details, such as hypotheses, data …
Preregistration is the process of specifying project details, such as hypotheses, data collection procedures, and analytical decisions, prior to conducting a study. It is designed to make a clearer distinction between data-driven, exploratory work and a-priori, confirmatory work. Both modes of research are valuable, but are easy to unintentionally conflate. See the Preregistration Revolution for more background and recommendations.
For research that uses existing datasets, there is an increased risk of analysts being biased by preliminary trends in the dataset. However, that risk can be balanced by proper blinding to any summary statistics in the dataset and the use of hold out datasets (where the "training" and "validation" datasets are kept separate from each other). See this page for specific recommendations about "split samples" or "hold out" datasets. Finally, if those procedures are not followed, disclosure of possible biases can inform the researcher and her audience about the proper role any results should have (i.e. the results should be deemed mostly exploratory and ideal for additional confirmation).
This project contains a template for creating your preregistration, designed specifically for research using existing data. In the future, this template will be integrated into the OSF.
Software Carpentry lesson on how to use the shell to navigate the …
Software Carpentry lesson on how to use the shell to navigate the filesystem and write simple loops and scripts. The Unix shell has been around longer than most of its users have been alive. It has survived so long because it’s a power tool that allows people to do complex things with just a few keystrokes. More importantly, it helps them combine existing programs in new ways and automate repetitive tasks so they aren’t typing the same things over and over again. Use of the shell is fundamental to using a wide range of other powerful tools and computing resources (including “high-performance computing†supercomputers). These lessons will start you on a path towards using these resources effectively.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.