This course considers the process of neurotransmission, especially chemicals used in the …
This course considers the process of neurotransmission, especially chemicals used in the brain and elsewhere to carry signals from nerve terminals to the structures they innervate. We focus on monoamine transmitters (acetylcholine; serotonin; dopamine and norepinephrine); we also examine amino acid and peptide transmitters and neuromodulators like adenosine. Macromolecules that mediate neurotransmitter synthesis, release, inactivation and receptor-mediated actions are discussed, as well as factors that regulate their activity and the second-messenger systems and ion fluxes that they control. The involvement of particular neurotransmitters in human diseases is considered.
Students learn about various crystals, such as kidney stones, within the human …
Students learn about various crystals, such as kidney stones, within the human body. They also learn about how crystals grow and ways to inhibit their growth. They also learn how researchers such as chemical engineers design drugs with the intent to inhibit crystal growth for medical treatment purposes and the factors they face when attempting to implement their designs. A day before presenting this lesson to students, conduct the associated activity, Rock Candy Your Body.
Cocaine afflicts many individuals and is potently addictive. Originally hailed as a …
Cocaine afflicts many individuals and is potently addictive. Originally hailed as a wonder-drug in the late 19th century, cocaine is now considered an illegal substance. Cocaine’s addictive properties can be attributed to changes in the dopamine reward pathway of the Ventral Tegmental Area and Substantia Nigra, Prefrontal Cortex, Dorsal Striatum, Nucleus Accumbens, Amygdala, Globus Pallidus, and Hippocampus. This drug affects the brain in two processes: binge and crave. The binge process highlights cocaine’s ability to block dopamine reuptake from the synapse resulting in hyperstimulation of the postsynaptic neuron in the dopamine reward pathway. The crave process promotes drug-seeking behavior through conditional and contextual cues. Understanding the effects of cocaine in the brain may grant insight in creating future medication and therapies to treat individuals addicted to this drug.
D-Lab Health provides a multidisciplinary approach to global health technology design via …
D-Lab Health provides a multidisciplinary approach to global health technology design via guest lectures and a major project based on fieldwork. We will explore the current state of global health challenges and learn how to design medical technologies that address those problems. Students may travel to Nicaragua during spring break to work with health professionals, using medical technology design kits to gain field experience for their device challenge. As a final class deliverable, you will create a product design solution to address challenges observed in the field. The resulting designs are prototyped in the summer for continued evaluation and testing.
Students are challenged to think as biomedical engineers and brainstorm ways to …
Students are challenged to think as biomedical engineers and brainstorm ways to administer medication to a patient who is unable to swallow. They learn about the advantages and disadvantages of current drug delivery methods—oral, injection, topical, inhalation and suppository—and pharmaceutical design considerations, including toxicity, efficacy, size, solubility/bioavailability and drug release duration. They apply their prior knowledge about human anatomy, the circulatory system, polymers, crystals and stoichiometry to real-world biomedical applications. A Microsoft® PowerPoint® presentation and worksheets are provided. This lesson prepares students for the associated activity in which they create and test large-size drug encapsulation prototypes to provide the desired delayed release and duration timing.
Students continue the research begun in the associated lesson as if they …
Students continue the research begun in the associated lesson as if they were biomedical engineers working for a pharmaceutical company. Groups each perform a simple chemical reaction (to precipitate solid calcium out of solution) to observe what may occur when Osteopontin levels drop in the body. With this additional research, students determine potential health complications that might arise from a new drug that could reduce inflammatory pain in many patients, improving their quality of life. The goal of this activity is to illustrate biomedical engineering as medical problem solving, as well as emphasize the importance of maintaining normal body chemistry.
Students learn how crystallization and inhibition occur by examining calcium oxalate crystals …
Students learn how crystallization and inhibition occur by examining calcium oxalate crystals with and without inhibitors that are capable of altering crystallization. Kidney stones are composed of calcium oxalate crystals, and engineers and doctors experiment with these crystals to determine how growth is affected when a potential drug is introduced. Students play the role of engineers by trying to determine which inhibitor would be the best for blocking crystallization.
The neuropharmacology course will discuss the drug-induced changes in functioning of the …
The neuropharmacology course will discuss the drug-induced changes in functioning of the nervous system. The specific focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission. This course will also refer to specific diseases of the nervous system and their treatment in addition to giving an overview of the techniques used for the study of neuropharmacology. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Designed to treat acute lymphoblastic leukaemia, or ALL, pegaspargase is an important and effective treatment option for both paediatric and adult patients. Pegaspargase is a modified form of the anti-ALL enzyme therapy L -asparaginase, derived mainly from E. coli . Unlike the native enzyme, pegaspargase is conjugated with polyethylene glycol , or pegylated—which offers various advantages, such as providing pegaspargase with a prolonged circulation time, allowing for less frequent administration - every two weeks. And it may reduce immunogenicity compared with native (or non-pegylated) L-asparaginase. Extensive evidence shows that, in adults and children newly diagnosed with ALL, intramuscular or intravenous administration of pegaspargase is an effective first-line treatment as part of a multi-agent chemotherapy regimen. It is also beneficial in patients with relapsed ALL who have hypersensitivity to E. coli L-asparaginase..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Join Scripps' Bill Gerwick in an exploration of the potential uses of …
Join Scripps' Bill Gerwick in an exploration of the potential uses of one of the most ancient of all life forms - blue-green algae - as a source for new pharmaceuticals with used ranging from anticancer compounds to drug screening. (54 minutes)
Students reinforce their knowledge of the different parts of the digestive system …
Students reinforce their knowledge of the different parts of the digestive system and explore the concept of simulation by developing a pill coating that can withstand the churning actions and acidic environment found in the stomach. Teams test the coating durability by using a clear soda to simulate stomach acid.
Students see and learn how crystallization and inhibition occur by making sugar …
Students see and learn how crystallization and inhibition occur by making sugar crystals with and without additives in a supersaturation solution, testing to see how the additives may alter crystallization, such as by improving crystal growth by more or larger crystals. After three days, students analyze the differences between the control crystals and those grown with additives, researching and attempting to deduce why certain additives blocked crystallization, showed no change or improved growth. Students relate what they learn from the rock candy experimentation to engineering drug researchers who design medicines for targeted purposes in the human body. Conduct the first half of this activity one day before presenting the associated lesson, Body Full of Crystals. Then conduct the second half of the activity.
Students experience the engineering design process as they design, fabricate, test and …
Students experience the engineering design process as they design, fabricate, test and redesign their own methods for encapsulation of a (hypothetical) new miracle drug. As if they are engineers, teams make large-size prototypes to test proof of concept. They use household materials (tape, paper towels, plastic wrap, weed-barrier fabric, glues, etc.) to attach a coating to a porous "shell" (a perforated plastic Wiffle® ball) containing the medicine (colored drink mix powder). The objective is to delay the drug release by a certain time and have a long release duration—patterned after the timed release requirements of many real-world pharmaceuticals that are released from a polymer shell via diffusion in the body. Guided by a worksheet, teams go through at least three design/test iterations, aiming to achieve a solution close to the target time release constraints.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.