Updating search results...

Search Resources

28 Results

View
Selected filters:
  • electromagnetic-radiation
Are cell phones safe or cancer causing?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is a Tug of War activity to spur the conversation about the controversy of the potential danger of cell phone usage. Prior to this, the students would have learned about the structure and energy of electromagnetic radiation.

Subject:
Educational Technology
Physics
Material Type:
Lesson Plan
Author:
Linda Warner
Date Added:
10/30/2018
Concord Consortium: Solar Oven
Read the Fine Print
Rating
0.0 stars

Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
04/02/2013
Data to Information
Read the Fine Print
Rating
0.0 stars

This lesson incorporates sea surface data collected by NASA satellites. Data for three surface characteristics- height, temperature and speed- are used for several activities. Students examine the differences in speed of currents relative to distance from the Equator. Sea surface data anomalies are charted and further analyzed. In addition, surface current data is presented to examine patterns related to El Niño. Note that this is lesson three of five on the Ocean Motion website. Each lesson investigates ocean surface circulation using satellite and model data and can be done independently. See Related URL's for links to the Ocean Motion Website that provide science background information, data resources, teacher material, student guides and a lesson matrix.

Subject:
Applied Science
Atmospheric Science
Engineering
Geoscience
Mathematics
Oceanography
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Case Study
Data Set
Diagram/Illustration
Lesson Plan
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
11/05/2014
Earth in Motion: Seasons
Read the Fine Print
Educational Use
Rating
0.0 stars

This interactive activity from the Adler Planetarium explains the reasons for the seasons. Featured is a game in which Earth must be properly placed in its orbit in order to send Max, the host, to different parts of the world during particular seasons.

Subject:
Atmospheric Science
Physical Science
Material Type:
Activity/Lab
Diagram/Illustration
Interactive
Simulation
Provider:
PBS LearningMedia
Provider Set:
PBS Learning Media: Multimedia Resources for the Classroom and Professional Development
Author:
National Science Foundation
WGBH Educational Foundation
Date Added:
12/17/2005
Electromagnetic Radiation
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a hypothetical scenario that delivers the unit's Grand Challenge Question: To apply an understanding of nanoparticles to treat, detect and protect against skin cancer. Towards finding a solution, they begin the research phase by investigating the first research question: What is electromagnetic energy? Students learn about the electromagnetic spectrum, ultraviolet radiation (including UVA, UVB and UVC rays), photon energy, the relationship between wave frequency and energy (c = λν), as well as about the Earth's ozone-layer protection and that nanoparticles are being used for medical applications. The lecture material also includes information on photo energy and the dual particle/wave model of light. Students complete a problem set to calculate frequency and energy.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Electromagnetic Spectrum
Read the Fine Print
Rating
0.0 stars

The electromagnetic spectrum* describes the range of energies associated with different forms of electromagnetic radiation. Electromagnetic radiation travels through space as discrete packets called photons. Photons can transport energy the way particles do, but photons have no mass*. Photons vary in the amount of energy they carry. The energy associated with a photon determines where on the electromagnetic spectrum it falls.

Subject:
Physical Science
Physics
Material Type:
Diagram/Illustration
Interactive
Provider:
Individual Authors
Provider Set:
Individual Authors
Author:
Science Primer - Andrew Staroscik
Date Added:
10/26/2012
Electromagnetic Waves: How Do Sunglasses Work?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the scientific and mathematical concepts around electromagnetic light properties that enable the engineering of sunglasses for eye protection. They compare and contrast tinted and polarized lenses as well as learn about light intensity and how different mediums reduce the intensities of various electromagnetic radiation wavelengths. Through a PowerPoint® presentation, students learn about light polarization, transmission, reflection, intensity, attenuation, and Malus’ law. A demo using two slinky springs helps to illustrate wave disturbances and different-direction polarizations. As a mini-activity, students manipulate slide-mounted polarizing filters to alter light intensity and see how polarization by transmission works. Students use the Malus’ law equation to calculate the transmitted light intensity and learn about Brewster’s angle. Two math problem student handouts are provided. Students also brainstorm ideas on how sunglasses could be designed and improved, which prepares them for the associated hands-on design/build activity.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
Lessons
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Everything Science: Physical Science, Grade 12
Unrestricted Use
CC BY
Rating
0.0 stars

This is a comprehensive science textbook for Grade 12. You can download or read it on-line on your mobile phone, computer or iPad. Every chapter comes with video lessons and explanations which help bring the ideas and concepts to life. Summary presentations at the end of every chapter offer an overview of the content covered, with key points highlighted for easy revision. Topics covered are: organic molecules, organic chemistry, organic macromolecules, polymers, reaction rates, electrochemical reactions, the chemical industry, motion in two dimensions, mechanical properties of matter, work, energy and power, doppler effect, colour, 2D and 3D wavefronts, wave nature of matter, electrodynamics, electronics, electromagnetic radiation, optical phenomena and properties of matter, light, photoelectric effect, lasers. This book is based upon the original Free High School Science Text series.

Subject:
Career and Technical Education
Electronic Technology
Physical Science
Physics
Material Type:
Textbook
Provider:
Siyavula
Date Added:
04/12/2012
Exploiting Polarization: Designing More Effective Sunglasses
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply what they know about light polarization and attenuation (learned in the associated lesson) to design, build, test, refine and then advertise their prototypes for more effective sunglasses. Presented as a hypothetical design scenario, students act as engineers who are challenged to create improved sunglasses that reduce glare and lower light intensity while increasing eye protection from UVA and UVB radiation compared to an existing model of sunglasses—and make them as inexpensive as possible. They use a light meter to measure and compare light intensities through the commercial sunglasses and their prototype lenses. They consider the project requirements and constraints in their designs. They brainstorm and evaluate possible design ideas. They keep track of materials costs. They create and present advertisements to the class that promote the sunglasses benefits, using collected data to justify their claims. A grading rubric and reflection handout are provided.

Subject:
Applied Science
Engineering
Mathematics
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
Activities
Author:
Adam Alster
Drew Kim
Quan Tran
Date Added:
05/30/2018
Exploring the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn the basics of the electromagnetic spectrum and how various types of electromagnetic waves are related in terms of wavelength and energy. In addition, they are introduced to the various types of waves that make up the electromagnetic spectrum including, radio waves, ultraviolet waves, visible light and infrared waves. These topics help inform students before they turn to designing solutions to an overarching engineering challenge question.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Faber
Ellen Zielinski
Date Added:
09/18/2014
Flame Test: Red, Green, Blue, Violet?
Read the Fine Print
Educational Use
Rating
0.0 stars

To become familiar with the transfer of energy in the form of quantum, students perform flame tests, which is one way chemical engineers identify elements by observing the color emitted when placed in a flame. After calculating and then preparing specific molarity solutions of strontium chloride, copper II chloride and potassium chloride (good practice!), students observe the distinct colors each solution produces when placed in a flame, determine the visible light wavelength, and apply that data to identify the metal in a mystery solution. They also calculate the frequency of energy for the solutions.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Michelle Bell
Date Added:
10/14/2015
Fun with Nanotechnology
Read the Fine Print
Educational Use
Rating
0.0 stars

Through three teacher-led demonstrations, students are shown samplers of real-world nanotechnology applications involving ferrofluids, quantum dots and gold nanoparticles. This nanomaterials engineering lesson introduces practical applications for nanotechnology and some scientific principles related to such applications. It provides students with a first-hand understanding of how nanotechnology and nanomaterials really work. Through the interactive demos, their interest is piqued about the odd and intriguing nano-materials behaviors they witness, which engages them to next conduct the three fun associated nanoscale technologies activities. The demos use materials readily available if supplies are handy for the three associated activities.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Sarah Castillo
Date Added:
09/18/2014
Greenhouse Gases
Read the Fine Print
Rating
0.0 stars

Explore how the Earth's atmosphere affects the energy balance between incoming and outgoing radiation. Using an interactive model, adjust realistic parameters such as how many clouds are present or how much carbon dioxide is in the air, and watch how these factors affect the global temperature.

Subject:
Chemistry
Ecology
Education
Forestry and Agriculture
Geoscience
Life Science
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Data Set
Diagram/Illustration
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
How Hot Is It?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and the heat capacity of different materials. Students also learn how some engineering requires an understanding of thermal energy.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014
Light and Matter: Atomic and Molecular Interactions
Unrestricted Use
CC BY
Rating
0.0 stars

In this unit students investigate the cause of sunburns, the function of sunscreen, and the ways in which chemists determine the molecular structure of matter by applying relationships about how light interacts with matter on an atomic or molecular level. 

Subject:
Physical Science
Material Type:
Activity/Lab
Assessment
Interactive
Lecture Notes
Lesson
Lesson Plan
Student Guide
Unit of Study
Author:
Tracy Poulsen
Date Added:
10/07/2022
Microwaves
Unrestricted Use
CC BY
Rating
0.0 stars

How do microwaves heat up your coffee? Adjust the frequency and amplitude of microwaves. Watch water molecules rotating and bouncing around. View the microwave field as a wave, a single line of vectors, or the entire field.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Ron LeMaster
Wendy Adams
Date Added:
11/15/2007
Physics II: Electricity and Magnetism
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Course 8.022 is one of several second-term freshman physics courses offered at MIT. It is geared towards students who are looking for a thorough and challenging introduction to electricity and magnetism. Topics covered include: Electric and magnetic field and potential; introduction to special relativity; Maxwell’s equations, in both differential and integral form; and properties of dielectrics and magnetic materials. In addition to the theoretical subject matter, several experiments in electricity and magnetism are performed by the students in the laboratory.
Acknowledgments
Prof. Sciolla would like to acknowledge the contributions of MIT Professors Scott Hughes and Peter Fisher to the development of this course. She would also like to acknowledge that these course materials include contributions from past instructors, textbooks, and other members of the MIT Physics Department affiliated with course 8.022. Since the following works have evolved over a period of many years, no single source can be attributed.

Subject:
Physical Science
Physics
Material Type:
Full Course
Provider:
MIT
Provider Set:
MIT OpenCourseWare
Author:
Sciolla, Gabriella
Date Added:
09/01/2004
Planets, Stars, Galaxies, and the Universe
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Walking up and down the hallways of Davey Lab at Penn State, you can find astronomers searching for and characterizing exoplanets, monitoring supernovae and other exploding stars, and measuring the details of the accelerating expansion of the Universe to determine the nature of dark energy. In Astro 801, we learn that with only the ability to measure the light from these distant, unreachable objects, we can still determine how the Solar System, stars, galaxies, and the Universe formed and evolved since the Big Bang. We are all citizens of the Universe, and in fact, you are made of starstuff. Come learn where the atoms in your body came from, and what will happen to them long after we are gone.

Subject:
Astronomy
Physical Science
Material Type:
Full Course
Provider:
Penn State College of Earth and Mineral Sciences
Author:
Chris Palma
Date Added:
10/07/2019
Quantum Dots and Colors
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the physical concept of the colors of rainbows as light energy in the form of waves with distinct wavelengths, but in a different manner than traditional kaleidoscopes. Looking at different quantum dot solutions, they make observations and measurements, and graph their data. They come to understand how nanoparticles interact with absorbing photons to produce colors. They learn the dependence of particle size and color wavelength and learn about real-world applications for using these colorful liquids.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Marc Bird
Date Added:
09/18/2014
Radiating Charge
Unrestricted Use
CC BY
Rating
0.0 stars

The electric field lines from a point charge evolve in time as the charge moves. Watch radiation propagate outward at the speed of light as you wiggle the charge. Stop a moving charge to see bremsstrahlung (braking) radiation. Explore the radiation patterns as the charge moves with sinusoidal, circular, or linear motion. You can move the charge any way you like, as long as you don���������t exceed the speed of light.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Michael Dubson
Date Added:
02/01/2013