Project-based course on the design of mechatronic devices to address needs identified …
Project-based course on the design of mechatronic devices to address needs identified by hospital-based clinicians and industry. Students work in teams to develop a mechatronic prototype. The lectures will cover the design of medical devices and robotics including sensors, actuators, and robots. The students will communicate with customers to understand design needs, then conduct study on prior art, intellectual property, due diligence, and idea conceptualization. Students will present ideas in class and to a broad audience from local industry. Students will also write a publication-quality final report, which they will be encouraged for publication submission.
As teachers it is important to interject real-world applications with science and …
As teachers it is important to interject real-world applications with science and math whenever possible. Students often do not connect the principles to the career opportunities. In our society, advanced manufacturing is creating many exciting careers that incorporate these scientific principles and provide excellent salaries. This project will require students to determine and design methods that will move a selected product in a designed assembly process.
Lean thinking, as well as associated processes and tools, have involved into …
Lean thinking, as well as associated processes and tools, have involved into a ubiquitous perspective for improving systems particularly in the manufacturing arena. With application experience has come an understanding of the boundaries of lean capabilities and the benefits of getting beyond these boundaries to further improve performance. Discrete event simulation is recognized as one beyond-the-boundaries of lean technique. Thus, the fundamental goal of this text is to show how discrete event simulation can be used in addition to lean thinking to achieve greater benefits in system improvement than with lean alone. Realizing this goal requires learning the problems that simulation solves as well as the methods required to solve them. The problems that simulation solves are captured in a collection of case studies. These studies serve as metaphors for industrial problems that are commonly addressed using lean and simulation.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Biopharmaceuticals, protein-based drugs manufactured by living cells, are some of the most powerful and effective drugs leading the fight against numerous diseases. But producing them is a notoriously difficult business. Growth conditions, purification procedures, and formulation requirements can unintentionally change the protein structure of these drugs, altering their efficacy and toxicity. Testing for these modifications is therefore crucial. But current methods are cumbersome and don’t provide the throughput and real-time analytics that today’s rapidly growing biopharma industry desperately needs to control their development and manufacturing efforts. Now, there’s a solution. Introducing Intabio’s Blaze system. The Blaze platform performs a comprehensive analysis of biopharmaceutical product quality with 100 times higher throughput than traditional approaches..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
The City X Project is an international educational workshop for 8-12 year-old …
The City X Project is an international educational workshop for 8-12 year-old students that teaches creative problem solving using 3D printing technologies and the design process. This 6-10 hour workshop is designed for 3rd-6th grade classrooms but can be adapted to fit a variety of environments. Read a full overview of the experience here: http://www.cityxproject.com/workshop/
Have you ever wondered why it takes such a long period of …
Have you ever wondered why it takes such a long period of time for NASA to build space exploration equipment? What is involved in manufacturing and building a rover for the Red Planet? During this lesson, students will discover the journey that a Mars rover embarks upon after being designed by engineers and before being prepared for launch. Students will investigate the fabrication techniques, tolerance concepts, assembly and field-testing associated with a Mars exploratory rover.
Students learn about the manufacturing phase of the engineering design process. They …
Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)
As students learn more about the manufacturing process, they use the final …
As students learn more about the manufacturing process, they use the final prototypes created in the previous activity to evaluate, design and manufacture final products. Teams work with more advanced materials and tools, such as plywood, Plexiglas, metals, epoxies, welding materials and machining tools. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 6 in a series of six that guide students through the engineering design loop.)
This project, which started in May 2021, has a duration of two …
This project, which started in May 2021, has a duration of two years ending last April 2023. DITMEP project aims to improve manufacturing learning, in particular Risk Prevention courses, generating digital capabilities on the methodology (through e-learning, gamification and augmented reality experiences) for educators and trainees. This supports and helps the transformation of manufacturing training aftermath of COVID-19. DITMEP has developed these blended courses for risk prevention with digital capabilities, in a transnational format solution for an innovative and reinforced education on composites manufacturing, which can be easily replicated at other sectors. The DITMEP project consortium is composed of 5 partners, from 3 different EU countries (Germany, Spain, Portugal). Partners come from the training center, university and certifier sectors to cover all aspects of training course development. The main objectives of the project are: • Training course deployment in an e-learning platform with a core syllabus on Risk Prevention and Health, prepared for its adaptation to the specific countries regulation. • Deployment of a common gamification methodology for Risk Prevention training modules • AR mobile application development to support 2 series of learning experiences proposed as part of the core training (virtual spaces signalisation and emergency drills). • To reinforce learners and teachers with digital capabilities: guides on how to use the materials, how to complement in-presence teaching and to develop on-line trainings. • Tools and methodology evaluation through pilot training implementations (in all 3 countries) with included tests for evaluation the procedures from the teachers/learners. Despite the corona pandemic, work in all work packages was able to start in May 2021. The fact that the topic of "digitization" has become extremely central nowadays motivates all project partners and shows that our research project has gained relevance again. The digital tools developed in this project will help to continue to provide high-quality training in the future. Our training course "Prevention of occupational hazards in composite manufacturing” consists of the two blocks "General Risks" and "Specific Risks in Composite manufacturing". The first block is divided into 3 units, the second block is divided into 5 units. Each unit will have its own theoretical part in which the trainee has to build up his knowledge. What you have learned can be applied in the practical part. For our “Personal Safety Equipment” and “Signalization” units, the practical part consists of AR tools, which we developed as part of the project. The theoretical part has been completed and translated into the respective languages of the consortium members (English, Spanish, German and Portuguese). All learning material are available on a Moodle platform and downloadable. The Moodle platform, the AR tools and the entire training course have been validated in pilot tests
Students act as Mars exploratory rover engineers. They evaluate rover equipment options …
Students act as Mars exploratory rover engineers. They evaluate rover equipment options and determine what parts fit in a provided NASA budget. With a given parts list, teams use these constraints to design for their rover. The students build and display their edible rover at a concluding design review.
Students act as Mars exploratory rover engineers, designing, building and displaying their …
Students act as Mars exploratory rover engineers, designing, building and displaying their edible rovers to a design review. To begin, they evaluate rover equipment and material options to determine which parts might fit in their given NASA budget. With provided parts and material lists, teams analyze their design options and use their findings to design their rovers.
The “Einstein Project” is a framework that is designed to help you …
The “Einstein Project” is a framework that is designed to help you find a solution to an everyday problem that makes you passionate in your thinking and designing. This project is designed to make you think outside of the box as active learners and create solutions in uncommon ways, forget about failing or succeeding and take chances.
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"On-the-job training is critical to any enterprise But how and why employers train employees remains something of a mystery especially in Australia, where research on the subject appears outdated To provide a fresh look, researchers surveyed employers across several industries including government and community services retail and manufacturing Reasons for training seemed to agree with findings reported in older studies But some new trends emerged such as an accelerated need to master new technologies and an increased focus on business strategy— indications of a continuously changing workplace across the board And while financial constraints present a major barrier to training, companies report doing more training than they did five years ago with the amount of training not necessarily linked to the size of an organization Although comparative studies with other countries are needed to tease out further trends these findings could help organizations make more cost-effective decis.."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Students are challenged to design and program Arduino-controlled robots that behave like …
Students are challenged to design and program Arduino-controlled robots that behave like simple versions of the automated guided vehicles engineers design for real-world applications. Using Arduino microcontroller boards, infrared (IR) sensors, servomotors, attachable wheels and plastic containers (for the robot frame), they make "Lunch-Bots." Teams program the robots to meet the project constraints—to follow a line of reflective tape, make turns and stop at a designated spot to deliver a package, such as a sandwich or pizza slice. They read and interpret analog voltages from IR sensors, compare how infrared reflects differently off different materials, and write Arduino programs that use IR sensor inputs to control the servomotors. Through the process, students experience the entire engineering design process. Pre/post-quizzes and coding help documents are provided.
This textbook provides an introduction to the important area of manufacturing processes. …
This textbook provides an introduction to the important area of manufacturing processes. This text will explain the hows, whys, and whens of various machining operations, set-ups, and procedures. Throughout this text, you will learn how machine tools operate, and when to use one particular machine instead of another. It is organized for students who plan to enter the manufacturing technology field and for those who wish to develop the skills, techniques, and knowledge essential for advancement in this occupational cluster. The organization and contents of this text focus primarily on theory and practice.
Manufacturing processes can be organized by considering the type of energy required …
Manufacturing processes can be organized by considering the type of energy required to shape the work-piece. In this course, sources of energy considered for machining are mechanical used for cutting and shaping, heat energy such as in laser cutting, photochemical such as in photolithography, and chemical energy such as in electro chemical machining and chemical vapor deposition (CVD). Students, guided by product specifications and a design will decide: 1) When to apply mechanical machining vs. lithography based machining, 2) What type of mechanical machining and what type of lithography based machining to apply, 3) When to employ bottom-up vs. top-down manufacturing, 4) When to choose serial, batch or continuous manufacturing and 5) What rapid prototyping method to select. A logical decision tree will be presented to sort the machining options. Examples from a variety of products ranging in size from nanometers to centimeters will be considered.
This collection uses primary sources to explore the Bracero Program. Digital Public …
This collection uses primary sources to explore the Bracero Program. Digital Public Library of America Primary Source Sets are designed to help students develop their critical thinking skills and draw diverse material from libraries, archives, and museums across the United States. Each set includes an overview, ten to fifteen primary sources, links to related resources, and a teaching guide. These sets were created and reviewed by the teachers on the DPLA's Education Advisory Committee.
In this activity, learners explore the question "What is paper?" Learners discover …
In this activity, learners explore the question "What is paper?" Learners discover the processes and materials required to make paper while experimenting with different recycled fibers and tools.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.