This course studies the relations of affect to cognition and behavior, feeling …
This course studies the relations of affect to cognition and behavior, feeling to thinking and acting, and values to beliefs and practices. These connections will be considered at the psychological level of organization and in terms of their neurobiological and sociocultural counterparts.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Identify and …
By the end of this section, you will be able to:Identify and describe the properties of lifeDescribe the levels of organization among living thingsRecognize and interpret a phylogenetic treeList examples of different sub disciplines in biology
By the end of this section, you will be able to:Identify and …
By the end of this section, you will be able to:Identify and describe the properties of lifeDescribe the levels of organization among living thingsRecognize and interpret a phylogenetic treeList examples of different sub disciplines in biology
Host Harry Kreisler welcomes neurobiologist Christof Koch for a discussion of what …
Host Harry Kreisler welcomes neurobiologist Christof Koch for a discussion of what biology can tell us about consciousness. He discusses the framework for defining the problem which he developed with Nobel Laureate Francis Crick. He reflects on the ongoing revolution in our understanding of the brain and how technology is impacting the transformation of our neuronal correlates of consciousness. He also discusses the implications of his research for our understanding of manŐs place in the universe. (49 min)
This course deals with the specific functions of neurons, the interactions of …
This course deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior. Topics covered include the analysis of mutations, and molecular analysis of the genes required for nervous system function. In particular, this course focuses on research work done with nematodes, fruit flies, mice, and humans.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine. Acknowledgments The study materials, problem sets, and quiz materials used during Fall 2004 for 7.012 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course #7.012. Since the following works have evolved over a period of many years, no single source can be attributed.
The course will span modern neuroscience from molecular neurobiology to perception and …
The course will span modern neuroscience from molecular neurobiology to perception and cognition, including the following major topics: anatomy and development of the brain; cell biology of neurons and glia; ion channels and electrical signaling; synaptic transmission, integration, and chemical systems of the brain; sensory systems, from transduction to perception; motor systems; and higher brain functions dealing with memory, language, and affective disorders.
The MIT Biology Department core Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, …
The MIT Biology Department core Introductory Biology courses, 7.012, 7.013, 7.014, 7.015, and 7.016 all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. The focus of 7.013 is on genomic approaches to human biology, including neuroscience, development, immunology, tissue repair and stem cells, tissue engineering, and infectious and inherited diseases, including cancer.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution. Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health and disease. Acknowledgements The study materials, problem sets, and quiz materials used during Spring 2005 for 7.014 include contributions from past instructors, teaching assistants, and other members of the MIT Biology Department affiliated with course 7.014. Since the following works have evolved over a period of many years, no single source can be attributed.
Lectures and discussions in this course cover the clinical, behavioral, and molecular …
Lectures and discussions in this course cover the clinical, behavioral, and molecular aspects of the brain aging processes in humans. Topics include the loss of memory and other cognitive abilities in normal aging, as well as neurodegenerative conditions such as Parkinson’s and Alzheimer’s diseases. Discussions based on readings taken from primary literature explore the current research in this field.
This course explores the social relevance of neuroscience, considering how emerging areas …
This course explores the social relevance of neuroscience, considering how emerging areas of brain research at once reflect and reshape social attitudes and agendas. Topics include brain imaging and popular media; neuroscience of empathy, trust, and moral reasoning; new fields of neuroeconomics and neuromarketing; ethical implications of neurotechnologies such as cognitive enhancement pharmaceuticals; neuroscience in the courtroom; and neuroscientific recasting of social problems such as addiction and violence. Guest lectures by neuroscientists, class discussion, and weekly readings in neuroscience, popular media, and science studies.
An opportunity for graduate study of advanced subjects in Brain and Cognitive …
An opportunity for graduate study of advanced subjects in Brain and Cognitive Sciences not included in other subject listings. The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32.
Memory is not a unitary faculty, but rather consists of multiple forms …
Memory is not a unitary faculty, but rather consists of multiple forms of learning that differ in their operating characteristics and neurobiological substrates. This seminar will consider current debates regarding the cognitive and neural architectures of memory, specifically focusing on recent efforts to address these controversies through application of functional neuroimaging (primarily fMRI and PET).
This resource is a video abstract of a research paper created by …
This resource is a video abstract of a research paper created by Research Square on behalf of its authors. It provides a synopsis that's easy to understand, and can be used to introduce the topics it covers to students, researchers, and the general public. The video's transcript is also provided in full, with a portion provided below for preview:
"Understanding how human decision-making and preferences manifest before conscious thought has long challenged researchers focused on cognitive and information science. Now, the field of neuromarketing – a discipline that looks at the neurocognitive underpinnings of consumer behavior – is starting to uncover, in amazing detail, exactly how the brain goes about recognizing a brand. An international research team based in Auckland University of Technology and Nottingham Trent University has devised a new machine learning method that tracks brain responses to logos on the millisecond timescale…even before conscious thoughts are formed. Their results shed light on the early spikes in brain activity that are tied to brand awareness. The method utilizes one of the most promising recent trends in artificial intelligence research: spiking neural networks. These networks use algorithms loosely modeled on the behavior of the human brain to recognize patterns in sets of streaming data..."
The rest of the transcript, along with a link to the research itself, is available on the resource itself.
Why do teenagers act the way they do? This video segment from …
Why do teenagers act the way they do? This video segment from FRONTLINE: Inside the Teenage Brain explores the work scientists are doing to explain some of the mysteries of teenage behavior.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.