In this activity, students will practice kitchen-related vocabulary, and the food preparation …
In this activity, students will practice kitchen-related vocabulary, and the food preparation steps, and then discuss their preference for places they like to eat at.Can-Do Statements:I can describe the food preparation steps.I can look at pictures in the kitchen vocabulary and identify them.I can talk about where I like to eat the most.
Biology is designed for multi-semester biology courses for science majors. It is …
Biology is designed for multi-semester biology courses for science majors. It is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand. To meet the needs of today’s instructors and students, some content has been strategically condensed while maintaining the overall scope and coverage of traditional texts for this course. Instructors can customize the book, adapting it to the approach that works best in their classroom. Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand—and apply—key concepts.
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the four major types of lipidsExplain the role of fats in storing energyDifferentiate between saturated and unsaturated fatty acidsDescribe phospholipids and their role in cellsDefine the basic structure of a steroid and some functions of steroidsExplain the how cholesterol helps to maintain the fluid nature of the plasma membrane
By the end of this section, you will be able to:Describe the …
By the end of this section, you will be able to:Describe the four major types of lipidsExplain the role of fats in storing energyDifferentiate between saturated and unsaturated fatty acidsDescribe phospholipids and their role in cellsDefine the basic structure of a steroid and some functions of steroidsExplain the how cholesterol helps to maintain the fluid nature of the plasma membrane
Students learn about a special branch of engineering called bioremediation, which is …
Students learn about a special branch of engineering called bioremediation, which is the use of living organisms to aid in the clean-up of pollutant spills. Students learn all about bioremediation and see examples of its importance. In the associated activity, students conduct an experiment and see bioremediation in action!
Students analyze international oil consumption and production data. They make several graphs …
Students analyze international oil consumption and production data. They make several graphs to organize the data and draw conclusions about the overall use of oil in the world.
In this edition, Nigerian attorney and environmental activist Oronto Douglas, talks about …
In this edition, Nigerian attorney and environmental activist Oronto Douglas, talks about political activism and cultural identity in the context of globalization, the international oil economy, and the domestic politics of Nigeria. (55 min)
Concluding a two-part lab activity, students use triple balance beams and graduated …
Concluding a two-part lab activity, students use triple balance beams and graduated cylinders to take measurements and calculate densities of several household liquids and compare them to the densities of irregularly shaped objects (as determined in Part 1). Then they create density columns with the three liquids and four solid items to test their calculations and predictions of the different densities. Once their density columns are complete, students determine the effect of adding detergent to the columns. After this activity, present the associated Density & Miscibility lesson for a discussion about why the column layers do not mix.
Students see how surface tension can enable light objects (paper clips, peppercorns) …
Students see how surface tension can enable light objects (paper clips, peppercorns) to float on an island of oil in water, and subsequently sink when the surface tension of the oil/water interface is reduced by the addition of a surfactant; such as ordinary dish soap.
Once a suitable well location has been identified, permitted, and leased, the …
Once a suitable well location has been identified, permitted, and leased, the next steps for oil and natural gas development are drilling, completion, and production:
Drilling typically takes about 50-60 days. It starts with preparing the site (clearing and leveling) and setting up a drilling rig to drill a borehole and feed steel pipe into the well. Drilling mud is used to manage downhole pressures, provide information about the rock layers being drilled through, and keep the drill bit cool. Safety equipment, such as a blowout preventer, is installed to prevent oil and natural gas from being released in rare unexpected overpressure situations. Completion is a 1-5 week process where the steel pipe in the well is perforated to connect the well bore to the oil or gas reservoir. As needed, additional recovery techniques such as hydraulic fracturing (for low permeability reservoirs) or steam flooding (for thick oil) are applied. A Christmas Tree (series of valves) is installed at the top of the well. As reservoir pressure declines, a pumpjack is installed. Production from a completed well can last 50+ years. During the production step, the well is monitored, maintained, and managed. In the U.S. the mineral rights owners (individuals) typically receive royalty interest payments on the oil and natural gas produced. In most other countries, the federal government owns the mineral rights.
This course explores the theoretical and empirical perspectives on individual and industrial …
This course explores the theoretical and empirical perspectives on individual and industrial demand for energy, energy supply, energy markets, and public policies affecting energy markets. It discusses aspects of the oil, natural gas, electricity, and nuclear power sectors and examines energy tax, price regulation, deregulation, energy efficiency and policies for controlling emission.
A survey of how America has become the world’s largest consumer of …
A survey of how America has become the world’s largest consumer of energy. Explores American history from the perspective of energy and its relationship to politics, diplomacy, the economy, science and technology, labor, culture, and the environment. Topics include muscle and water power in early America, coal and the Industrial Revolution, electrification, energy consumption in the home, oil and U.S. foreign policy, automobiles and suburbanization, nuclear power, OPEC and the 70’s energy crisis, global warming, and possible paths for the future.
Since the first successful oil well in 1859, the U.S. has drilled …
Since the first successful oil well in 1859, the U.S. has drilled millions of wells for oil and gas. Drilling surged with demand, technology, and geopolitics, with notable periods like the post-WWII boom and the fracking-driven increase in natural gas wells. This progress has brought economic benefits and energy shifts, yet also raised environmental and social concerns.
Have you seen a Clean Coal baseball cap? In the challenge to …
Have you seen a Clean Coal baseball cap? In the challenge to meet soaring energy demand with limited resources, volatile issues like those related to the environment, national security and public health are often addressed outside of normal market transactions and are called externalities, or nonmarket factors. Stakeholders can act in resourceful ways to create a nonmarket environment that best serves their interest. A firm may challenge a law that makes it expensive or difficult to do business or compete with others, for example. An individual may organize a boycott of products or services that violate the individual's interests or principles--hey, don't buy from them! Nonmarket strategy in the energy sector is the subject of this engaging course.
In this lesson, students investigate sources of fossil fuels, particularly oil. Students …
In this lesson, students investigate sources of fossil fuels, particularly oil. Students will learn how engineers and scientists look for oil by taking core samples from a model of the Earth. Also, students will explore and analyze oil consumption and production in the United States and around the world.
Oil and gas activities contribute to significant air pollution, resulting in adverse …
Oil and gas activities contribute to significant air pollution, resulting in adverse health effects and economic costs. Emissions from drilling, production, and transportation release pollutants that are linked to asthma, heart attacks, and premature deaths, especially impacting vulnerable populations. Addressing these emissions is crucial for protecting public health, mitigating economic burdens, and implementing comprehensive policies to reduce air pollution from the oil and gas industry.
The three fossil fuels are oil, natural gas, and coal. Fossil fuels …
The three fossil fuels are oil, natural gas, and coal. Fossil fuels are hydrocarbons formed from deeply-buried, dead organic material subject to high temperature and pressure for hundreds of millions of years. They are a depletable, non-renewable energy resource.
Fossil fuel combustion (converting chemical energy into heat) powered the Industrial Revolution and is the largest contributor to climate change and air pollution. Significant infrastructure, economic value, geopolitical conflict, and legacy environmental issues are associated with fossil fuels.
In a very hands-on activity, students observe and feel the differences between …
In a very hands-on activity, students observe and feel the differences between two cleaning methods, with and without hand soap, using coffee grounds to represent "dirt."Most of the dirt and bacteria on our hands is encased in a thin layer of oil, so because of the properties of oil and water, cleaning your hands with water alone has little effect when trying to remove the dirt. This activity demonstrates the importance of using a surfactant, such as hand soap, when washing your hands.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.