Updating search results...

Search Resources

23 Results

View
Selected filters:
  • scientific-inquiry
Air- She's So heavy!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is an inquiry activity that relies of pervious understanding of balancing and weighing to introduce a properties of air.

Subject:
Chemistry
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Date Added:
01/20/2012
Argumentation Routine
Read the Fine Print
Rating
0.0 stars

This activity helps students learn to be open-minded and to participate in respectful discussion using evidence and reasoning. These are great life skills that any citizen of the world should have. They’re also scientific argumentation skills. The ability to change one’s mind based on evidence and reasoning, to see issues as complex, and to look at issues and claims from different perspectives are all scientific argumentation skills. Students also learn that absolute answers rarely exist. These skills and understandings are useful beyond science for anyone interested in figuring things out and in talking with others about issues, particularly with those who have different perspectives and opinions.

Subject:
English Language Arts
Speaking and Listening
Material Type:
Activity/Lab
Provider:
Beetles: Science and Teaching for Field Instructors
Date Added:
04/14/2020
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Algebra
Applied Science
Engineering
Mathematics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Stephen M. Hou
Date Added:
06/02/2015
Asking Questions, All the Time
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The ability to ask and answer questions while reading is essential to comprehension. This article discusses instructional strategies used to teach questioning and provides many online resources. The article appears in the free, online magazine Beyond Weather and the Water Cycle, which explores the seven essential principles of the climate sciences for teachers in k-grade 5 classrooms.

Subject:
Education
English Language Arts
Reading Informational Text
Material Type:
Lesson Plan
Teaching/Learning Strategy
Provider:
Ohio State University College of Education and Human Ecology
Provider Set:
Beyond Weather and the Water Cycle
Author:
Jessica Fries-Gaither
National Science Foundation
Date Added:
05/30/2012
Biology 2e
Unrestricted Use
CC BY
Rating
0.0 stars

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts.

Subject:
Biology
Life Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Jung Choi
Mary Ann Clark
Matthew Douglas
Date Added:
06/06/2019
Can Earthquakes Be Predicted?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video uses a simple analog setup to explore why earthquakes are so unpredictable. The setup is simple enough that students should be able to assemble and operate it on their own with a teacher's supervision. The teaching approach used in this module is known as the 5E approach, which stands for Engagement, Exploration, Explanation, Elaboration, and Evaluation. Over the course of this lesson, the basic mechanisms that give rise to the behavior of the simple analog system are explained, and further elaboration helps the students to apply their understanding of the analog system to complex fault systems that cause earthquakes

Subject:
Geology
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Zach Adam
Date Added:
06/11/2012
Catalytic Converter
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video lesson aims to motivate students about chemistry and to raise their awareness about how chemistry helps in solving certain environmental problems. In this lesson, the air pollution problem created by cars and other vehicles is presented. The lesson will highlight causes of this problem, harmful products from it and possible solutions. There will also be discussion of ways to convert the pollutants produced by burning oil in vehicles into more friendly products.

Subject:
Applied Science
Chemistry
Environmental Science
Physical Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Prof. Mohammad El-Khateeb
Date Added:
06/11/2012
Classifying Animals by Appearance Versus DNA Sequence
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The topic of this video module is how to classify animals based on how closely related they are. The main learning objective is that students will learn how to make phylogenetic trees based on both physical characteristics and on DNA sequence. Students will also learn why the objective and quantitative nature of DNA sequencing is preferable when it come to classifying animals based on how closely related they are. Knowledge prerequisites to this lesson include that students have some understanding of what DNA is and that they have a familiarity with the base-pairing rules and with writing a DNA sequence.

Subject:
Biology
Genetics
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Megan E. Rokop
Date Added:
06/11/2012
Curve Fitting
Unrestricted Use
CC BY
Rating
0.0 stars

With your mouse, drag data points and their error bars, and watch the best-fit polynomial curve update instantly. You choose the type of fit: linear, quadratic, cubic, or quartic. The reduced chi-square statistic shows you when the fit is good. Or you can try to find the best fit by manually adjusting fit parameters.

Subject:
Mathematics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Trish Loeblein
Date Added:
08/01/2008
Curve Fitting (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

With your mouse, drag data points and their error bars, and watch the best-fit polynomial curve update instantly. You choose the type of fit: linear, quadratic, cubic, or quartic. The reduced chi-square statistic shows you when the fit is good. Or you can try to find the best fit by manually adjusting fit parameters.

Subject:
Mathematics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Patricia Loblein
Date Added:
08/02/2012
Discovering Medicines, Using Robots and Computers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Scientists who are working to discover new medicines often use robots to prepare samples of cells, allowing them to test chemicals to identify those that might be used to treat diseases. Students will meet a scientist who works to identify new medicines. She created free software that ''looks'' at images of cells and determines which images show cells that have responded to the potential medicines. Students will learn about how this technology is currently enabling research to identify new antibiotics to treat tuberculosis. Students will complete hands-on activities that demonstrate how new medicines can be discovered using robots and computer software, starring the student as ''the computer.'' In the process, the students learn about experimental design, including positive and negative controls.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Anne Carpenter
Date Added:
05/07/2015
The Flaws of Averages
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video presents an introduction to the Flaws of Averages using three exciting examples: the ''crossing of the river'' example, the ''cookie'' example, and the ''dance class'' example. Averages are often worthwhile representations of a set of data by a single descriptive number. The objective of this module, however, is to simply point out a few pitfalls that could arise if one is not attentive to details when calculating and interpreting averages. The essential prerequisite knowledge for this video lesson is the ability to calculate an average from a set of numbers. During this video lesson, students will learn about three flaws of averages: (1) The average is not always a good description of the actual situation, (2) The function of the average is not always the same as the average of the function, and (3) The average depends on your perspective. To convey these concepts, the students are presented with the three real world examples mentioned above.

Subject:
Education
Mathematics
Numbers and Operations
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Daniel Livengood
MIT BLOSSOMS
Rhonda Jordan
Date Added:
06/02/2012
Flu Math Games
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video lesson shows students that math can play a role in understanding how an infectious disease spreads and how it can be controlled. During this lesson, students will see and use both deterministic and probabilistic models and will learn by doing through role-playing exercises. The primary exercises between video segments of this lesson are class-intensive simulation games in which members of the class 'infect' each other under alternative math modeling assumptions about disease progression. Also there is an occasional class discussion and local discussion with nearby classmates.

Subject:
Biology
Life Science
Social Science
Sociology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Mai Perches
Richard C. Larson
Sahar Hashmi
Date Added:
07/12/2014
Inquiry: Using an Egg Drop Activity to Promote Critical Thinking and Analysis Skills
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this hands-on inquiry activity, students will design and construct an apparatus that will permit an egg to survive a nine foot fall. Students are given limited materials, so they must critically think about the design and improvise strategies during the building of the apparatus

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Seth Webster
Date Added:
12/09/2011
Is Bigger Better? A Look at a Selection Bias that Is All Around Us
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video addresses a particular problem of selection bias, a statistical bias in which there is an error in choosing the individuals or groups to make broader inferences. Rather than delve into this broad topic via formal statistics, we investigate how it may appear in our everyday lives, sometimes distorting our perceptions of people, places and events, unless we are careful. When people are picked at random from two groups of different sizes, most of those selected usually come from the bigger group. That means we will hear more about the experience of the bigger group than that of the smaller one. This isn't always a bad thing, but it isn't always a good thing either. Because big groups ''speak louder,'' we have to be careful when we write mathematical formulas about what happened in the two groups. We think about this issue in this video, with examples that involve theaters, buses, and lemons. The prerequisite for this video lesson is a familiarity with algebra. It will take about one hour to complete, and the only materials needed are a blackboard and chalk.

Subject:
Education
Mathematics
Social Science
Sociology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Anna Teytelman
Arnold Barnett
MIT BLOSSOMS
Date Added:
06/02/2012
Life Science for Middle School (Teacher's Edition)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

CK-12 Life Science Honors For Middle School covers seven units: Understanding Living Things; Cells: The Building Blocks of Life; Genetics and Evolution; Prokaryotes, Protists, Fungi, and Plants; The Animal Kingdom; The Human Body; and Ecology.

Subject:
Biology
Life Science
Material Type:
Activity/Lab
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Author:
Wilkin, Douglas (Editor)
Date Added:
04/21/2010
Meta-ethics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course considers a range of philosophical questions about the foundations of morality, such as whether and in what sense morality is objective, the nature of moral discourse, and how we can come to know right from wrong.

Subject:
Arts and Humanities
Philosophy
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Khoo, Justin
Date Added:
09/01/2015
Methods for Protein Purification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Protein Purification video lesson is intended to give students some insight into the process and tools that scientists and engineers use to explore proteins. It is designed to extend the knowledge of students who are already somewhat sophisticated and who have a good understanding of basic biology. The question that motivates this lesson is, ''what makes two cell types different?'' and this question is posed in several ways. Such scientific reasoning raises the experimental question: how could you study just a subset of specialized proteins that distinguish one cell type from another? Two techniques useful in this regard are considered in the lesson.

Subject:
Biology
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Natalie Kuldell, PhD
Date Added:
06/16/2015
Philosophy of Quantum Mechanics
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Quantum mechanics–even in the ordinary, non-relativistic, “particle” formulation that will be the primary focus of this course–has been a staggeringly successful physical theory, surely one of the crowning achievements of 20th century science. It’s also rather bizarre–bizarre enough to lead very intelligent and otherwise sensible people to make such claims as that the universe is perpetually splitting into many copies of itself, that conscious minds have the power to make physical systems “jump” in unpredictable ways, that classical logic stands in need of fundamental revision, and much, much more. In this course, we intelligent and sensible people will attempt to take a sober look at these and other alleged implications of quantum mechanics, as well as certain stubborn problems that continue to trouble its foundations.
Along the way, we will take plenty of time out to discuss philosophical questions about science that quantum mechanics raises in new and interesting ways: e.g., what it means to attribute probabilities to physical events, what the aims of scientific inquiry are (does it aim at something true, or merely at something useful?), what the role of observation is in constructing a scientific theory, what it means to say that there is an “objective” physical world, whether something as basic as logic can be viewed as an empirical discipline, whether there can be meaningful scientific questions whose answers cannot possibly be settled by experiment, and more.

Subject:
Arts and Humanities
Philosophy
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Hall, Edward
Date Added:
02/01/2005
Roots, Shoots, and Wood
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The topic of photosynthesis is a fundamental concept in biology, chemistry, and earth science. Educational studies have found that despite classroom presentations, most students retain their naive idea that a plant's mass is mostly derived from the soil, and not from the air. To call students' attention to this misconception, at the beginning of this lesson we will provide a surprising experimental result so that students will confront their mental mistake. Next, we will help students better envision photosynthesis by modeling where the atoms come from in this important process that produces food for the planet. This lesson can be completed in 50-60 minutes, with the students working on in-class activities during 20-25 minutes of the lesson. As a prerequisite, students need an introductory lesson on photosynthesis, something that includes the overall chemical equation. If students have already studied the intracellular photosynthetic process in detail, this video can still be very helpful because students often miss the big picture about photosynthesis. Materials needed include red, white and black LEGO bricks (described in downloadable hand-out) or strips of red, white and black paper plus paper clips (directions provided in downloadable hand-out). In addition to class discussions, the major in-class activity of this video involves the students' modeling with LEGO bricks or colored paper where the atoms come from in photosynthesis.

Subject:
Botany
Life Science
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Kathleen M. Vandiver
Date Added:
09/09/2015