This is a task from the Illustrative Mathematics website that is one …
This is a task from the Illustrative Mathematics website that is one part of a complete illustration of the standard to which it is aligned. Each task has at least one solution and some commentary that addresses important asects of the task and its potential use. Here are the first few lines of the commentary for this task: Materials The students will need grid paper and colored pencils; some color for the ships and (for example) red for explosions on their ships and their...
In this activity, students explore the effect of chemical erosion on statues …
In this activity, students explore the effect of chemical erosion on statues and monuments. They use chalk to see what happens when limestone is placed in liquids with different pH values. They also learn several things that engineers are doing to reduce the effects of acid rain.
In this hands-on activity, students explore the electrical force that takes place …
In this hands-on activity, students explore the electrical force that takes place between two objects. Each student builds an electroscope and uses the device to draw conclusions about objects' charge intensity. Students also determine what factors influence electric force.
Elementary grade students investigate heat transfer in this activity to design and …
Elementary grade students investigate heat transfer in this activity to design and build a solar oven, then test its effectiveness using a temperature sensor. It blends the hands-on activity with digital graphing tools that allow kids to easily plot and share their data. Included in the package are illustrated procedures and extension activities. Note Requirements: This lesson requires a "VernierGo" temperature sensing device, available for ~ $40. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology. The Consortium develops digital learning innovations for science, mathematics, and engineering.
In this 40-day module, students develop a coordinate system for the first …
In this 40-day module, students develop a coordinate system for the first quadrant of the coordinate plane and use it to solve problems. Students use the familiar number line as an introduction to the idea of a coordinate, and they construct two perpendicular number lines to create a coordinate system on the plane. Students see that just as points on the line can be located by their distance from 0, the planes coordinate system can be used to locate and plot points using two coordinates. They then use the coordinate system to explore relationships between points, ordered pairs, patterns, lines and, more abstractly, the rules that generate them. This study culminates in an exploration of the coordinate plane in real world applications.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
This series of activities and lesson notes is part of a unit …
This series of activities and lesson notes is part of a unit in which the purpose is, “Students will interpret visual information in order to make informed consumer decisions.” The activities begin with informal exploration.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En este módulo de 40 días, los estudiantes desarrollan un sistema de coordenadas para el primer cuadrante del plano de coordenadas y lo usan para resolver problemas. Los estudiantes usan la línea numérica familiar como una introducción a la idea de una coordenada, y construyen dos líneas numéricas perpendiculares para crear un sistema de coordenadas en el plano. Los estudiantes ven que, al igual que los puntos en la línea se pueden ubicar por su distancia desde 0, el sistema de coordenadas del plano se puede usar para localizar y trazar puntos utilizando dos coordenadas. Luego usan el sistema de coordenadas para explorar relaciones entre puntos, pares ordenados, patrones, líneas y, de manera más abstracta, las reglas que las generan. Este estudio culmina en una exploración del plano de coordenadas en aplicaciones del mundo real.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In this 40-day module, students develop a coordinate system for the first quadrant of the coordinate plane and use it to solve problems. Students use the familiar number line as an introduction to the idea of a coordinate, and they construct two perpendicular number lines to create a coordinate system on the plane. Students see that just as points on the line can be located by their distance from 0, the planes coordinate system can be used to locate and plot points using two coordinates. They then use the coordinate system to explore relationships between points, ordered pairs, patterns, lines and, more abstractly, the rules that generate them. This study culminates in an exploration of the coordinate plane in real world applications.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
The purpose of this activity is to demonstrate Newton's third law of …
The purpose of this activity is to demonstrate Newton's third law of motion which states that every action has an equal and opposite reaction through a small wooden car. The Newton cars show how action/reaction works and how the mass of a moving object affects the acceleration and force of the system. Subsequently, the Newton cars provide students with an excellent analogy for how rockets actually work.
The purpose of this lesson is to teach students about the three …
The purpose of this lesson is to teach students about the three dimensional Cartesian coordinate system. It is important for structural engineers to be confident graphing in 3D in order to be able to describe locations in space to fellow engineers.
The intent of clarifying statements is to provide additional guidance for educators …
The intent of clarifying statements is to provide additional guidance for educators to communicate the intent of the standard to support the future development of curricular resources and assessments aligned to the 2021 math standards. Clarifying statements can be in the form of succinct sentences or paragraphs that attend to one of four types of clarifications: (1) Student Experiences; (2) Examples; (3) Boundaries; and (4) Connection to Math Practices.
To further their understanding of sound energy, students identify the different pitches …
To further their understanding of sound energy, students identify the different pitches and frequencies created by a vibrating ruler and a straw kazoo. They create high- and low-pitch sound waves.
Three short, hands-on, in-class demos expand students' understand of energy. First, using …
Three short, hands-on, in-class demos expand students' understand of energy. First, using peanuts and heat, students see how the human body burns food to make energy. Then, students create paper snake mobiles to explore how heat energy can cause motion. Finally, students determine the effect that heat energy from the sun (or a lamp) has on temperature by placing pans of water in different locations.
Windmills have been used for hundreds of years to collect energy from …
Windmills have been used for hundreds of years to collect energy from the wind in order to pump water, grind grain, and more recently generate electricity. There are many possible designs for the blades of a wind generator and engineers are always trying new ones. Design and test your own wind generator, then try to improve it by running a small electric motor connected to a voltage sensor.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.