Students explore static electricity by rubbing a simulated balloon on a sweater. …
Students explore static electricity by rubbing a simulated balloon on a sweater. As they view the charges in the sweater, balloon, and adjacent wall, they gain an understanding of charge transfer. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments.
Why does a balloon stick to your sweater? Rub a balloon on …
Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.
Move point charges around on the playing field and then view the …
Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.
Move point charges around on the playing field and then view the …
Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.
Conceptual Physics is a year-long course based on CK-12 OER instructional material …
Conceptual Physics is a year-long course based on CK-12 OER instructional material and supplemented with limited commercially-available materials. The course is project-based, argument-driven inquiry. Each unit begins with presentation of an intriguing phenomenon, followed by an essential question about the phenomenon, and a project centered on answering that essential question. Throughout the unit, students conduct research and investigations to answer portions of the question. Each unit has a student "Task" at the end that serves as an assessment of the unit's concepts. At the end of each unit, students assemble all of the unit tasks and synthesize a personal final project that answers the essential question in a personal context chosen by the student.
Play hockey with electric charges. Place charges on the ice, then hit …
Play hockey with electric charges. Place charges on the ice, then hit start to try to get the puck in the goal. View the electric field. Trace the puck's motion. Make the game harder by placing walls in front of the goal. This is a clone of the popular simulation of the same name marketed by Physics Academic Software and written by Prof. Ruth Chabay of the Dept of Physics at North Carolina State University.
Play hockey with electric charges. Place charges on the ice, then hit …
Play hockey with electric charges. Place charges on the ice, then hit start to try to get the puck in the goal. View the electric field. Trace the puck's motion. Make the game harder by placing walls in front of the goal. This is a clone of the popular simulation of the same name marketed by Physics Academic Software and written by Prof. Ruth Chabay of the Dept of Physics at North Carolina State University.
Use a series of interactive models and games to explore electrostatics. Learn …
Use a series of interactive models and games to explore electrostatics. Learn about the effects positive and negative charges have on one another, and investigate these effects further through games. Learn about Coulomb's law and the concept that both the distance between the charges and the difference in the charges affect the strength of the force. Explore polarization at an atomic level, and learn how a material that does not hold any net charge can be attracted to a charged object. Students will be able to:
Visualize the gravitational force that two objects exert on each other. Change …
Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.
Visualize the gravitational force that two objects exert on each other. Change …
Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.
You are part of the NASA design crew and your task is …
You are part of the NASA design crew and your task is to design a suit to keep the human body safe from the hazards of deep space. Are you up to the challenge? This is an ADA compliant document.
Living and working in space presents many challenges for humans. Use this …
Living and working in space presents many challenges for humans. Use this ADA Compliant student guide to explore what many of those challenges are as well as possible solutions.
While living in space can seem like nothing but exciting, astronauts encounter …
While living in space can seem like nothing but exciting, astronauts encounter many physical, biological, and psychological hazards. Use this guide to explore more about living and working in space.
Living and working in space presents many challenges for humans. Use this …
Living and working in space presents many challenges for humans. Use this student guide to explore what many of those challenges are as well as possible solutions.
The Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry is …
The Integrated Conceptual Science Program Course 1 Integrated Physics and Chemistry is a three dimensional course based on the Conceptual Progression Model of the Next Generation Science Standards. It is designed to be used as part of a three course program that addresses all high school science performance expectations. Course 1 is designed for ninth grade students. This resource includes the teacher materials, supporting documents, and short videos to support teachers in using the materials. The Courses were designed using the Ambitious Science Teaching (AST) framework. It is strongly encouraged that before using these materials that you be familiar with AST. We suggest that you watch the AST Overview short video found here: https://datapuzzles.org/ambitious-science-teaching and explore this Google Slide deck that contains many resources designed to further your understanding of AST: https://docs.google.com/presentation/d/1WOUVmlm636_7i2l0GYa9JkX1TCK3NMdySfpxKN7IM7A/edit?usp=sharing
Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to …
Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between an object. The students will learn the material through Lectures, Discovery Activities, Guided Inquiry Activities, Technology Laboratories, and a Laboratory. The importance of being able to predict the forces between objects via Newton’s Law of Gravitation or Coulomb’s Law of Electrostatic Forces will be assessed through primarily technology based activities. This allows the students to explore these forces on the appropriate scales and provides an interactive activity for in the classroom or at home.
Patterns Physics is the initial course in the 3-year high school Patterns …
Patterns Physics is the initial course in the 3-year high school Patterns Science sequence. Patterns Physics focuses on three-dimensional (3D) learning through culturally responsive, phenomena-based storylines that intertwine the disciplinary core ideas of physics and earth science with the scientific and engineering practices and crosscutting concepts as described in the Next Generation Science Standards (NGSS).
The Patterns High School Science Sequence (https://hsscience4all.org/) is a three year course pathway and curriculum aligned to the Next Generation Science Standards (NGSS).
Each course utilizes: - Common instructional strategies - Real world phenomena - Design challenges to engage students and support their learning.
For more information, contact us at info@pdxstem.org.
The curriculum is a combination of teacher-generated and curated open-content materials. The Teacher-generated materials are shared freely under a Attribution-NonCommercial-Sharealike Creative Commons License.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.