In this two-part activity, students design and build Rube Goldberg machines. This …
In this two-part activity, students design and build Rube Goldberg machines. This open-ended challenge employs the engineering design process and may have a pre-determined purpose, such as rolling a marble into a cup from a distance, or let students decide the purposes.
Emphasizing the design, build, and test steps of the engineering design process, …
Emphasizing the design, build, and test steps of the engineering design process, groups create a ping-pong paddle. After building their paddle, students conduct tests and compare their design to a store-bought paddle and use a Venn diagram to organize their information. Based on their results, students write product reviews for their paddle. This project allows students to build and test a design, iterate upon that design as well as explore how data analysis of a product works.
This course will examine theory of scenic design as currently practiced, as …
This course will examine theory of scenic design as currently practiced, as well as historical traditions for use of performance space and audience/performer engagement. Four play scripts and one opera or dance theater piece will be designed after in-depth analysis; emphasis will be on the social, political and cultural milieu at the time of their creation, and now.
Students learn about the types of possible loads, how to calculate ultimate …
Students learn about the types of possible loads, how to calculate ultimate load combinations, and investigate the different sizes for the beams (girders) and columns (piers) of simple bridge design. Students learn the steps that engineers use to design bridges: understanding the problem, determining the potential bridge loads, calculating the highest possible load, and calculating the amount of material needed to resist the loads.
Students are introduced to engineering, specifically to biomedical engineering and the engineering …
Students are introduced to engineering, specifically to biomedical engineering and the engineering design process, through a short lecture and an associated hands-on activity in which they design their own medical devices for retrieving foreign bodies from the ear canal. Through the lesson, they learn the basics of ear anatomy and how ear infections occur and are treated. Besides antibiotic treatment, the most common treatment for chronic ear infections is the insertion of ear tubes to drain fluid from the middle ear space to relieve pressure on the ear drum. Medical devices for this procedure, a very common children's surgery, are limited, sometimes resulting in unnecessary complications from a simple procedure. Thus, biomedical engineers must think creatively to develop new solutions (that is, new and improved medical devices/instruments) for inserting ear tubes into the ear drum. The class learns the engineering design process from this ear tube example of a medical device design problem. In the associated activity, students explore biomedical engineering on their own by designing prototype medical devices to solve another ear problem commonly experienced by children: the lodging of a foreign body (such as a pebble, bead or popcorn kernel) in the ear canal. The activity concludes by teams sharing and verbally analyzing their devices.
Students learn the concept behind the engineering design of a polymer brush—a …
Students learn the concept behind the engineering design of a polymer brush—a coating consisting of polymers that is “tethered” to a particular surface. Polymer brushes can be used on water filtration membranes as an antifouling coating. After designing a model that represents an antifouling polymer brush coating for a water filtration surface, students take on the challenge to engineer their brush design on the surface of a Styrofoam block (which serves as a model for a surface filter) using various materials.
This course provides an exciting, eye-opening, and thoroughly useful inquiry into what …
This course provides an exciting, eye-opening, and thoroughly useful inquiry into what it takes to live an extraordinary life, on your own terms. The instructors address what it takes to succeed, to be proud of your life, and to be happy in it. Participants tackle career satisfaction, money, body, vices, and relationship to themselves. They learn how to confront issues in their lives, how to live life, and how to learn from it. A short version of this course meets during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. Then this semester-long extension of the IAP course is taught to interested members of the MIT community. This not-for-credit course is sponsored by the Department of Science, Technology, and Society. A similar, semester-long version of this course is taught in the Sloan Fellows Program. Acknowledgment The instructors would like to thank Prof. David Mindell for his sponsorship of this course, his hopes for its continued expansion, and his commitment to the well-being of MIT students.
This course provides an exciting, eye-opening, and thoroughly useful inquiry into what …
This course provides an exciting, eye-opening, and thoroughly useful inquiry into what it takes to live an extraordinary life, on your own terms. The instructors address what it takes to succeed, to be proud of your life, and to be happy in it. Participants tackle career satisfaction, money, body, vices, and relationship to themselves and others. They learn how to address issues in their lives, how to live life, and how to learn from it. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This not-for-credit course is sponsored by the Department of Science, Technology, and Society. A similar, semester-long version of this course is taught in the Sloan Fellows Program. A semester-long extension of the IAP course is also taught to the population at large of MIT (please see PE.550, Spring). Acknowledgment The instructors would like to thank Prof. David Mindell for his sponsorship of this course, his intention for its continued expansion, and his commitment to the well-being of MIT students.
How can an understanding of pH—a logarithmic scale used to identify the …
How can an understanding of pH—a logarithmic scale used to identify the acidity or basicity of a water-based solution—be used to design and create a color-changing paint? This activity provides students the opportunity to extract dyes from natural products and test dyes for acids or bases as teams develop a prototype “paint” that is eventually applied to help with a wall redesign at a local children’s hospital. Students learn about how dyes are extracted from organic material and use the engineering design process to test dyes using a variety of indicators to achieve the right color for their prototype. Students iterate on their dyes and use ratios and proportions to calculate the amount of dye needed to successfully complete their painting project.
Students learn the engineering design process by following the steps, from problem …
Students learn the engineering design process by following the steps, from problem identification to designing a device and evaluating its efficacy and areas for improvement. A quick story at the beginning of the activity sets up the challenge: A small child put a pebble in his ear and we don't know how to get it out! Acting as biomedical engineers, students are asked to design a device to remove it. Each student pair is provided with a model ear canal and a variety of classroom materials. A worksheet guides the design process as students create devices and attempt to extract pebbles from the ear canal.
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of …
Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.
Students will explore properties of sound and sound waves, experiment with building …
Students will explore properties of sound and sound waves, experiment with building models of various musical instruments, then design and build a playable musical instrument of their choosing.
Design challenge: Strong, light structures are necessary in constructing buildings (especially in …
Design challenge: Strong, light structures are necessary in constructing buildings (especially in areas with extreme weather) as well as air and space craft.
This course will guide graduate students through the process of using rapid …
This course will guide graduate students through the process of using rapid prototyping and CAD/CAM devices in a studio environment. The class has a theoretical focus on machine use within the process of design. Each student is expected to have completed one graduate level of design computing with a full understanding of solid modeling in CAD. Students are also expected to have completed at least one graduate design studio.
This book was written by two artist educators who teach digital art …
This book was written by two artist educators who teach digital art and design studio foundation classes. While teaching classes that take place in software laboratories, we noticed that many of our students expected to learn to use software, but gave little consideration to aesthetics or art and design history. A typical first day question is, "Are we going to learn Photoshop in this class?" This book is a mash-up of the Bauhaus Basic Course and open source software such as Inkscape, Gimp, Firefox, and Processing. We have taken some of the visual principles and exercises from the Bauhaus Basic Course and adapted them into exercises for these applications.
This course examines the theory and practice of using computational methods in …
This course examines the theory and practice of using computational methods in the emerging field of digital humanities. It develops an understanding of key digital humanities concepts, such as data representation, digital archives, information visualization, and user interaction through the study of contemporary research, in conjunction with working on real-world projects for scholarly, educational, and public needs. Students create prototypes, write design papers, and conduct user studies.
This class introduces studies in the algorithmic manipulation of type as word, …
This class introduces studies in the algorithmic manipulation of type as word, symbol, and form. Problems covered will include semantic filtering, inherently unstable letterforms, and spoken letters. The history and traditions of typography, and their entry into the digital age, will be studied. Weekly assignments using Java® will explore new ways of looking at and manipulating type.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.