In this 25-day Grade 2 module, students expand their skill with and …
In this 25-day Grade 2 module, students expand their skill with and understanding of units by bundling ones, tens, and hundreds up to a thousand with straws. Unlike the length of 10 centimeters in Module 2, these bundles are discrete sets. One unit can be grabbed and counted just like a banana?1 hundred, 2 hundred, 3 hundred, etc. A number in Grade 1 generally consisted of two different units, tens and ones. Now, in Grade 2, a number generally consists of three units: hundreds, tens, and ones. The bundled units are organized by separating them largest to smallest, ordered from left to right. Over the course of the module, instruction moves from physical bundles that show the proportionality of the units to non-proportional place value disks and to numerals on the place value chart.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
In Module 3, students' understanding of addition and subtraction of fractions extends …
In Module 3, students' understanding of addition and subtraction of fractions extends from earlier work with fraction equivalence and decimals. This module marks a significant shift away from the elementary grades' centrality of base ten units to the study and use of the full set of fractional units from Grade 5 forward, especially as applied to algebra.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
Build your own miniature "greenhouse" out of a plastic container and plastic …
Build your own miniature "greenhouse" out of a plastic container and plastic wrap, and fill it with different things such as dirt and sand to observe the effect this has on temperature. Monitor the temperature using temperature probes and digitally plot the data on the graphs provided in the activity.
This guide provides student-driven projects that can directly teach subject area standards …
This guide provides student-driven projects that can directly teach subject area standards in tandem with foundational understandings of what AI is, how it works, and how it impacts society.
Instead of simply learning about AI through videos or lectures, the students completing these projects are active participants in their AI exploration. In the process, students work directly with innovative AI technologies, participate in “unplugged” activities that further their understanding of how AI technologies work, and create various authentic products—from presentations to designing an AI robot—to demonstrate their learning. • Project 1: What AI Does Well and Does Not Do Well • Project 2: Training Data and Machine Learning • Project 3: Senses vs. Sensors • Project 4: Navigation and AI
Visit the ISTE website with all the free practical guides for engaging students in AI creation: https://www.iste.org/areas-of-focus/AI-in-education
This lesson unit is intended to help you assess how students reason …
This lesson unit is intended to help you assess how students reason about geometry and, in particular, how well they are able to: use facts about the angle sum and exterior angles of triangles to calculate missing angles; apply angle theorems to parallel lines cut by a transversal; interpret geometrical diagrams using mathematical properties to identify similarity of triangles.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to use geometric properties to solve problems. In particular, it will help you identify and help students who have difficulty: decomposing complex shapes into simpler ones in order to solve a problem; bringing together several geometric concepts to solve a problem; and finding the relationship between radii of inscribed and circumscribed circles of right triangles.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to interpret distanceĐtime graphs and, in particular, to help you identify students who: interpret distanceĐtime graphs as if they are pictures of situations rather than abstract representations of them; and have difficulty relating speeds to slopes of these graphs.
This lesson unit is intended to help teachers assess how well students …
This lesson unit is intended to help teachers assess how well students are able to: interpret data and evaluate statistical summaries; and critique someone elseŐs interpretations of data and evaluations of statistical summaries. The lesson also introduces students to the dangers of misapplying simple statistics in real-world contexts, and illustrates some of the common abuses of statistics and charts found in the media.
Clothesline is one of many Mathematically Productive Instructional Routines (MPIR). They are short (10ish minutes), …
Clothesline is one of many Mathematically Productive Instructional Routines (MPIR). They are short (10ish minutes), daily exercises aimed at building number sense. This is one of six different MPIR covered in the Mathematically Productive Instructional Routines collection from the Washington Office of Public Instruction and the Washington Association of Educational Service Districts.
My Favortie kNOw is one of many Mathematically Productive Instructional Routines (MPIR). They are short …
My Favortie kNOw is one of many Mathematically Productive Instructional Routines (MPIR). They are short (10ish minutes), daily exercises aimed at building number sense. This is one of six different MPIR covered in the Mathematically Productive Instructional Routines collection from the Washington Office of Public Instruction and the Washington Association of Educational Service Districts.
Notice and Wonder is one of many Mathematically Productive Instructional Routines (MPIR). They are short …
Notice and Wonder is one of many Mathematically Productive Instructional Routines (MPIR). They are short (10ish minutes), daily exercises aimed at building number sense. This is one of six different MPIR covered in the Mathematically Productive Instructional Routines collection from the Washington Office of Public Instruction and the Washington Association of Educational Service Districts.
Number Talks are one of many Mathematically Productive Instructional Routines (MPIR). They are short …
Number Talks are one of many Mathematically Productive Instructional Routines (MPIR). They are short (10ish minutes), daily exercises aimed at building number sense. This is one of six different MPIR covered in the Mathematically Productive Instructional Routines collection from the Washington Office of Public Instruction and the Washington Association of Educational Service Districts.
Ten Minute Talk is one of many Mathematically Productive Instructional Routines (MPIR). They are short …
Ten Minute Talk is one of many Mathematically Productive Instructional Routines (MPIR). They are short (10ish minutes), daily exercises aimed at building number sense. This is one of six different MPIR covered in the Mathematically Productive Instructional Routines collection from the Washington Office of Public Instruction and the Washington Association of Educational Service Districts.
Which One Desn't Belong is one of many Mathematically Productive Instructional Routines (MPIR). They are short …
Which One Desn't Belong is one of many Mathematically Productive Instructional Routines (MPIR). They are short (10ish minutes), daily exercises aimed at building number sense. This is one of six different MPIR covered in the Mathematically Productive Instructional Routines collection from the Washington Office of Public Instruction and the Washington Association of Educational Service Districts.
This is great exploring properties of magnetism science lab for young scientists. …
This is great exploring properties of magnetism science lab for young scientists. It is meant to be an experiential precursor before covering topics of magnetism. It could easily be adapted for older children.
Distributions and Variability Type of Unit: Project Prior Knowledge Students should be …
Distributions and Variability
Type of Unit: Project
Prior Knowledge
Students should be able to:
Represent and interpret data using a line plot. Understand other visual representations of data.
Lesson Flow
Students begin the unit by discussing what constitutes a statistical question. In order to answer statistical questions, data must be gathered in a consistent and accurate manner and then analyzed using appropriate tools.
Students learn different tools for analyzing data, including:
Measures of center: mean (average), median, mode Measures of spread: mean absolute deviation, lower and upper extremes, lower and upper quartile, interquartile range Visual representations: line plot, box plot, histogram
These tools are compared and contrasted to better understand the benefits and limitations of each. Analyzing different data sets using these tools will develop an understanding for which ones are the most appropriate to interpret the given data.
To demonstrate their understanding of the concepts, students will work on a project for the duration of the unit. The project will involve identifying an appropriate statistical question, collecting data, analyzing data, and presenting the results. It will serve as the final assessment.
Equations and Inequalities Type of Unit: Concept Prior Knowledge Students should be …
Equations and Inequalities
Type of Unit: Concept
Prior Knowledge
Students should be able to:
Add, subtract, multiply, and divide with whole numbers, fractions, and decimals. Use the symbols <, >, and =. Evaluate expressions for specific values of their variables. Identify when two expressions are equivalent. Simplify expressions using the distributive property and by combining like terms. Use ratio and rate reasoning to solve real-world problems. Order rational numbers. Represent rational numbers on a number line.
Lesson Flow
In the exploratory lesson, students use a balance scale to find a counterfeit coin that weighs less than the genuine coins. Then continuing with a balance scale, students write mathematical equations and inequalities, identify numbers that are, or are not, solutions to an equation or an inequality, and learn how to use the addition and multiplication properties of equality to solve equations. Students then learn how to use equations to solve word problems, including word problems that can be solved by writing a proportion. Finally, students connect inequalities and their graphs to real-world situations.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.