Updating search results...

Search Resources

95 Results

View
Selected filters:
  • active-learning
Race and Space
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This assignment exposes students to racial inequalities in their own communities and helps them to identify the impact of racial segregation on quality of life. The big ideas in this assignment are racial inequality, residential segregation, and environmental justice.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Cultural Geography
Social Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Lindsay Custer, Cascadia Community College
Date Added:
11/19/2021
Radiant Energy Flow
Read the Fine Print
Rating
0.0 stars

How does energy flow in and out of our atmosphere? Explore how solar and infrared radiation enters and exits the atmosphere with an interactive model. Control the amounts of carbon dioxide and clouds present in the model and learn how these factors can influence global temperature. Record results using snapshots of the model in the virtual lab notebook where you can annotate your observations.

Subject:
Physical Science
Physics
Material Type:
Activity/Lab
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Reagents, Compositions, Weight Loss
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This is a short experimental study of what happens to aluminum hydroxide, silicic acid, magnesium oxide, and calcium carbonate (or reagents of instructors choice) when they are heated to 110 and 1200 degrees.

Students determine the formula and calculate the mole percent and weight percent of each element and oxide in each reagent.
They heat the samples and calculate percentage weight loss or gain.
Finally, they write a lab report summarizing their results.

Be sure to have students save their samples for later use in a lab that introduces X-ray diffraction.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Chemistry
Mathematics
Measurement and Data
Physical Science
Physics
Statistics and Probability
Material Type:
Activity/Lab
Homework/Assignment
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Dexter Perkins
Date Added:
09/07/2020
RealWorldMath
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Real World Math is a collection of free math activities for Google Earth designed for students and educators. Mathematics is much more than a set of problems in a textbook. In the virtual world of Google Earth, concepts and challenges can be presented in a meaningful way that portray the usefulness of the ideas.

Material Type:
Homework/Assignment
Interactive
Lesson Plan
Simulation
Teaching/Learning Strategy
Provider:
Real World Math
Author:
Thomas Petra
Date Added:
03/27/2008
Red Beans and Rice: Slope failure experimental modeling
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, students replicate the slope failure experiment
presented by Densmore et al. (1997) in the journal Science. They are given the original article and the slope failure apparatus (along with all associated materials) and then they need to figure out how to replicate the experiment. Once they have completed an experimental run of sufficient length, they compile and analyze their data and compare it to the article's results.

After completing this portion of the lab, the students read the discussion and reply (Aalto et al., 1998; Densmore et al., 1998) and critically evaluate they results of the experiment and its applicability to the real world and landscape evolution.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Life Science
Mathematics
Measurement and Data
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Tom Hickson
Date Added:
09/06/2020
Relative Age-dating -- Discovery of Important Stratigraphic Principles
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

When piecing together the geologic history of the Earth, geologists rely on several key relative age-dating principles that allow us to determine the relative ages of rocks and the timing of significant geologic events. In a typical Historical Geology class or textbook, instructors/authors briefly discuss the important early researchers in the geological sciences, and then give the name of the stratigraphic principle, useful for relative age-dating of rocks and events, that these 17th and 18th century scientists are credited with discovering. After the instructor/author defines these principles, students are usually shown several examples so they can see how the principle can be applied.

But why not start with the examples and let students discover these principles for themselves?

Students are split into small groups which each work to discover a different relative age-dating principle. The groups are shown photos and given handouts with drawings of rock outcrops illustrating the various principles. These handouts include worksheets for which they must answer a series of prompts that help lead them to the discovery of their relative age-dating principle. Groups must also invent a name for their principle, and select a spokesperson who will present the group's results to the rest of the class.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Business and Communication
Communication
Geology
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Roger Steinberg
Date Added:
08/23/2020
Relative Geologic Time and the Geologic Time Scale
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Students are given a short introduction to fossils, strata, Steno's law of superposition, and the development of the geologic time scale from initial description of systems, through the realization that fossils could be used to correlate between systems, to the assembly of the modern geologic time scale. Then, each student in the course is given a sheet of paper with a simple stratigraphic column and associated fossils representing a geologic system on one side and a short description of the location and history of discovery of the system on the other. On a large wall, students then assemble four geologic columns from their systems representing mainland Europe, Great Britain, the Eastern U.S. and the Western U.S. using the fossils illustrated on their sheets to correlate systems. The instructor guides this process by placing the first system on the wall and by providing some narration as the columns take shape. Europe and Great Britain are assembled first, one sheet at a time, providing when completed the framework of the modern geologic time scale. Once this is up on the wall, the remaining students can assemble the other two columns in minutes using fossils to correlate between American and European systems. A temporal gap in the Grand Canyon sequence provides an opportunity to discuss the incompleteness of the rock record in any one place and a system composed of igneous and metamorphic rocks with no fossils is used to point out the difference between radiometric (absolute) and biostratigraphic (relative) dating.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Biology
Education
Geology
Life Science
Mathematics
Measurement and Data
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Bret Bennington
Date Added:
08/27/2020
Scale of Scholarly Publishing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This lesson on the nature and cost of scholarly publishing could be taught by
itself, or as part of a series on scholarly communication, or as a small part of a larger lesson on
information privilege.

Subject:
Applied Science
Information Science
Material Type:
Lesson
Provider:
Community of Online Research Assignments
Author:
Duke University Libraries RIS Team
Date Added:
11/10/2020
Scanning Tunneling Microscopy
Read the Fine Print
Rating
0.0 stars

Use a virtual scanning tunneling microscope (STM) to observe electron behavior in an atomic-scale world. Walk through the principles of this technology step-by-step. First learn how the STM works. Then try it yourself! Use a virtual STM to manipulate individual atoms by scanning for, picking up, and moving electrons. Finally, explore the advantages and disadvantages of the two modes of an STM: the constant-height mode and the constant-current mode.

Subject:
Applied Science
Education
Engineering
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Seeing Motion
Read the Fine Print
Rating
0.0 stars

Explore your own straight-line motion using a motion sensor to generate distance versus time graphs of your own motion. Learn how changes in speed and direction affect the graph, and gain an understanding of how motion can be represented on a graph.

Subject:
Algebra
Applied Science
Education
Mathematics
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Diagram/Illustration
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Semiconductors
Read the Fine Print
Rating
0.0 stars

Semiconductors are the materials that make modern electronics work. Learn about the basic properties of intrinsic and extrinsic or 'doped' semiconductors with several visualizations. Turn a silicon crystal into an insulator or a conductor, create a depletion region between semiconductors, and explore probability waves of an electron in this interactive activity.

Subject:
Applied Science
Education
Engineering
Life Science
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Spectroscopy
Read the Fine Print
Rating
0.0 stars

What happens when an excited atom emits a photon? What can we deduce about that atom based on the photons it can emit? A series of interactive models allows you to examine how the energy levels the electrons of an atom occupy affect the types of photons that can be emitted. Use a digital spectrometer to record which wavelengths certain atoms will emit, and then use this knowledge to compare and identify types of atoms. Students will be abe to:

Subject:
Applied Science
Chemistry
Education
Engineering
Mathematics
Physical Science
Physics
Material Type:
Data Set
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/13/2011
Stabilization Wedges Game
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Learning about complexities carbon stabilization firsthand with the Princeton University Carbon Mitigation Initiave's Sabilization Wedges Game

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Subject:
Applied Science
Atmospheric Science
Biology
Environmental Science
Life Science
Mathematics
Measurement and Data
Physical Science
Statistics and Probability
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
David Kobilka
Date Added:
05/02/2017
States of Matter
Unrestricted Use
CC BY
Rating
0.0 stars

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction potential to the forces between molecules.

Subject:
Physical Science
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
John Blanco
Kathy Perkins
Noah Podolefsky
Paul Beale
Sarah McKagan
Trish Loeblein
Wendy Adams
Date Added:
07/18/2011
Syllabus Biopsychology Signature project
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The syllabus used for the University College Groningen course Biopsychology in Spring 2021. This syllabus outlines the general lesson plan for the course, but focuses most heavily on the main assessment method used in the course: the Signature project. For this project, students worked together in small teams to create an interdisciplinary webpage on a Biopsychology topic. These resulting research-based, peer-reviewed webpages cover a range of topics, and contain active learning assignments for others to use. The webpages were tied together to create another open educational resource, found related to this syllabus.

The syllabus outlines in detail how the project was created and graded, and can be used as inspiration for others to create their own active learning assignment which results in the creation of open educational resource.

Subject:
Applied Science
Biology
Health, Medicine and Nursing
Life Science
Psychology
Social Science
Material Type:
Assessment
Homework/Assignment
Lesson Plan
Syllabus
Teaching/Learning Strategy
Author:
Chris May
Date Added:
04/06/2022
Transistors: The Field Effect
Read the Fine Print
Rating
0.0 stars

Transistors are the building blocks of modern electronic devices. Your cell phones, iPods, and computers all depend on them to operate. Thanks to today's microfabrication technology, transistors can be made very tiny and be massively produced. You are probably using billions of them while working with this activity now--as of 2006, a dual-core Intel microprocessor contains 1.7 billion transistors. The field effect transistor is the most common type of transistor. So we will focus on it in this activity.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Data Set
Interactive
Lecture Notes
Provider:
Concord Consortium
Provider Set:
Concord Consortium Collection
Author:
The Concord Consortium
Date Added:
12/11/2011
Unified Engineering I, II, III, & IV
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Full Course
Provider Set:
MIT OpenCourseWare
Author:
Craig, Jennifer
Drela, Mark
Hall, Steven
Lagace, Paul
Lundqvist, Ingrid
Naeser, Gustaf
Perry, Heidi
Radovitzky, Raúl
Waitz, Ian
Young, Peter
Date Added:
09/01/2005