How does changing an ecosystem affect what lives there? This unit on …
How does changing an ecosystem affect what lives there? This unit on ecosystem dynamics and biodiversity begins with students reading headlines that claim that the future of orangutans is in peril and that the purchasing of chocolate may be the cause. Students then examine the ingredients in popular chocolate candies and learn that one of these ingredients--palm oil--is grown on farms near the rainforest where orangutans live. This prompts students to develop initial models to explain how buying candy could impact orangutans.
This unit is part of the OpenSciEd core instructional materials for middle school.
The purpose of this resource is to observe when selected bird species …
The purpose of this resource is to observe when selected bird species first arrive at your study site, and to count the numbers until few or none of these birds are seen. Students select a common and easily identifiable bird species in their region and observe when the bird species first arrives. Students use binoculars or telescopes to scan a study site and count how many they see. They continue to observe every other day until few or none of the selected species can be seen.
This lesson sequence guides students to learn about the geography and the …
This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.
Learners research the effects of melting sea ice in the Bering Sea …
Learners research the effects of melting sea ice in the Bering Sea Ecosystem. They create research proposals to earn a place on the scientific research vessel Healy and present their findings and proposals to a Research Board committee.
Students learn the fundamentals of using microbes to treat wastewater. They discover …
Students learn the fundamentals of using microbes to treat wastewater. They discover how wastewater is generated and its primary constituents. Microbial metabolism, enzymes and bioreactors are explored to fully understand the primary processes occurring within organisms.
The purpose of this resource is to observe budburst on selected trees …
The purpose of this resource is to observe budburst on selected trees at a Land Cover or Phenology Site. All students will learn about hummingbird natural history and ecology. Students will learn how to identify and age male and female Ruby-throated Hummingbirds and to observe migration and feeding behavior. Students will learn how to make connections among hummingbird behavior and weather, climate, food availability, seasonality, photoperiod (day length), and other environmental factors.
CK-12’s Life Science delivers a full course of study in the life …
CK-12’s Life Science delivers a full course of study in the life sciences for the middle school student, relating an understanding of the history, disciplines, tools, and modern techniques of science to the exploration of cell biology, molecular biology, genetics, evolution, prokaryotes, protists,fungi, plants, animals, invertebrates, vertebrates, human biology, and ecology. This digital textbook was reviewed for its alignment with California content standards.
This series of two lessons uses cutting-edge scientific research on the effects …
This series of two lessons uses cutting-edge scientific research on the effects of climate change on communities in the intertidal. Through a combination of a dynamic presentation and several videos, students are introduced to the effects of climate change on the ocean (ocean acidification and temperature increase) and what is known about how ocean organisms are affected. Then students read and interpret graphs and construct a scientific explanation based on data from this research.
In this activity, students learn about how climate change is affecting the …
In this activity, students learn about how climate change is affecting the Arctic ecosystem and then investigate how this change is impacting polar bear populations. Students analyze maps of Arctic sea ice, temperature graphs, and polar bear population data to answer questions about the impact of climate change on the Arctic ecosystem.
This unit consists of seven distinct activities that teach climate change, the …
This unit consists of seven distinct activities that teach climate change, the water cycle, and the effects of the changing climate on water resources through the use of games, science experiments, investigations, role-playing, research, and creating a final project to showcase learning.
With funding from the Environmental Protection Agency, The Washington State Department of …
With funding from the Environmental Protection Agency, The Washington State Department of Natural Resources' Aquatic Assessment and Monitoring Team (AAMT) developed three curricula (elementary, middle, and high school) that are designed to bridge the goals of bringing local climate science into Washington state classrooms and local internships by highlighting aspects of the Acidification Nearshore Monitoring Network (ANeMoNe) More specifically, the curricula focus on local climate science issues and incorporate elements of scientific monitoring methods and community science to showcase how climate is being addressed in Washington State and how students can get involved in fighting climate change in their own “backyards”. Youth learn principles of aquatic ecology, environmental and social impacts driven by climate change, government and social response, and issues of environmental justice. These climate resilience curricula are intended to inspire and engage youth throughout Washington to implement climate change adaptations in their local communities.
By the end of this course participants will…Understand how local phenomena interact …
By the end of this course participants will…Understand how local phenomena interact with the Next Generation Science Standards, climate change, ecosystems, and people in a community.Experience how local phenomena and field investigations can build scientific understanding.
Explore a NetLogo model of populations of rabbits, grass, and weeds. First, …
Explore a NetLogo model of populations of rabbits, grass, and weeds. First, adjust the model to start with a different rabbit population size. Then adjust model variables, such as how fast the plants or weeds grow, to get more grass than weeds. Change the amount of energy the grass or weeds provide to the rabbits and the food preference. Use line graphs to monitor the effects of changes you make to the model, and determine which settings affect the proportion of grass to weeds when rabbits eat both.
This teaching activity addresses environmental stresses on corals. Students assess coral bleaching …
This teaching activity addresses environmental stresses on corals. Students assess coral bleaching using water temperature data from the NOAA National Data Buoy Center. Students learn about the habitat of corals, the stresses on coral populations, and the impact of increased sea surface temperatures on coral reefs. In a discussion section, the connection between coral bleaching and global warming is drawn.
Killer Whale Task Force is the introduction to eight units in the …
Killer Whale Task Force is the introduction to eight units in the Explore the Salish Sea Curriculum. Each unit contains a detailed unit plan, a slideshow, student journal, and assessments. All elements are adaptable and can be tailored to your local community. This unit introduces the overall phenomenon for the curriculum-the endangered status of the Southern Resident Killer Whales - and puts students in the roles of working group members in the Governor-appointed taskforce to identify the biggest threats and recommend solutions to save the whales. No matter which units you choose to implement with your class, start here to set the premise.
In this unit, students will solve a mystery about changes in oyster …
In this unit, students will solve a mystery about changes in oyster larvae in the Salish Sea, causing oyster farmers to send their larvae to Hawaii until they grow stronger. They will look for clues in: • activities and games, articles, and films that introduce the concepts of habitat and ecosystem • structures and behaviors for survival in intertidal zone habitats • the Earth-moon-sun interactions that drive the tides • the importance of First Foods of the intertidal to first nations communities; • how intertidal organisms interact across the Salish Sea food web Afterward, they will arrive at the importance of a balanced carbon cycle in the health of the ocean and use a full scientific investigation to test if their local waters have a healthy pH for oyster larvae and other shelled creatures. Clear pathways of hope are woven into this complex issue, so students know that scientists and leaders are working to solve this problem - and kids can help!
Did you know that a elephant seal can hold its breath for …
Did you know that a elephant seal can hold its breath for 77 minutes and dive 5,000 feet (1524 meters) into the sea? We are still working on the science to discover just what enables these remarkable feats under intense pressure, cold, and dark. Diving birds and mammals utilize physical, behavioral, and physiological adaptations to withstand the extreme conditions of diving and still return to the surface with oxygen reserves (and a meal!). Your students can join us in investigating just how they do this.
This unit will review the concepts of pressure-changing with depth, marine food webs, structure and function, photosynthesis and respiration, and of course, the process of science. It will introduce metabolism, the diving reflex, sensory structures for detecting prey, wave properties of acoustics, trophic pyramids, and bioaccumulation of toxins in long-lived predators. Oh yeah, and there will be orca forensics!
Migration explores the routes, distances, and purposes for wildlife migration with a …
Migration explores the routes, distances, and purposes for wildlife migration with a special focus on Pacific salmon. This iconic species of the Pacific Northwest has shaped life in Salish Sea watersheds since they first entered rivers and creeks to spawn, bringing their ocean-derived nutrients in reach of land animals, plants, and people. Nearly 1/4 of the nitrogen in the leaves of our giant temperate rainforest trees once swam in the sea as salmon. They are the reason for the great natural wealth of the Salish Sea and beyond.
Learning to identify habitat needs based on their specific migrations will empower students to identify ways they can improve salmon habitat near their own schools and possibly design and carry out a salmon habitat improvement project. Reach out to salmon experts in your community for support with this unit and project, from protecting storm drains to raising salmon in the classroom. Share your salmon project story along the way. Your school may just be featured as our next Salish Sea Heroes!
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.